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THESIS ABSTRACT 

Gamma rhythm and its relationship with neuronal activity in early visual cortex 

Xiaoxuan Jia 

 

Local field potentials (LFPs) are low frequency (<200 Hz), extracellular voltage 

fluctuations, which are thought to reflect aggregated activity of a neural ensemble. The 

gamma components (30-50 Hz) of the LFP are correlated with numerous perceptual and 

cognitive phenomena, and have been proposed to have important functions in sensory 

processing. Abnormal gamma activity has been reported in patients suffering from a 

range of neurological disorders.  

 

Despite its interesting response properties and the theories which these have spawned, the 

relationship between gamma and neuronal spiking activity—the activity that relays 

information between cortical areas—remains unclear. My thesis focuses on elucidating 

this relationship. To do so, I simultaneously recorded LFPs and spiking activity with 

multi-electrode arrays in the primary visual cortex and area V2 of anesthetized macaque 

monkeys. 

 

The first data chapter of my thesis explores the stimulus selectivity of gamma, its 

relationship with the tuning of local spiking activity, and its spatial extent. Previous 

studies have provided widely disparate views about these properties. We provide 

evidence that this arises in part because gamma power arises from two sources that reflect 

different spatial scales of neural ensemble activity: a 'global' rhythm that is spatially 

coherent, and well-tuned tuned with shared stimulus preference across millimeters of 



II 
 

cortex; and a broadband increase in LFP power that reflects local spiking activity. The 

relative contribution of these two components depends on stimulus conditions, which can 

thus alter gamma tuning and spatial coherence. These results indicate that the tuning 

properties and spatial extent of gamma are flexible and the relationship between gamma 

rhythm and neuronal activity is dependent on stimulus conditions.  

 

The second data chapter of my thesis explores the plasticity of the LFP and of its gamma 

components in particular. We compare the orientation tuning of spiking activity and of 

LFP power in a range of frequency bands, before and after prolonged adaptation to an 

oriented grating. We find that the shared preference of the ‘global’ component of gamma 

rhythm induced with large gratings is extremely sensitive to adaptation: its preference can 

shift by as much as 90 degrees after adaptation. This suggests that its preference 

magnifies a bias in the neuronal representation of visual stimuli. Higher frequency 

components of the LFP (70 Hz+), on the other hand, show more subtle effects, like those 

of spiking activity. Low frequency power is untuned both before and after adaptation. 

 

The final data chapter explores the interaction between gamma and spiking timing, a 

poorly understood relationship that lies at the heart of many proposed gamma functions. 

To test how fluctuations in gamma power affect the coordination of spiking activity in V1, 

we compared pairwise and higher-order synchrony under a variety of stimulus conditions, 

inducing either the global gamma rhythm or more local one. We find that spiking activity 

is phase modulated and thus more coordinated when a global gamma rhythm is induced. 
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To test the consequence of this coordinated V1 activity on downstream networks, we 

paired our V1 recordings with recordings in the middle layers of V2. The coordination of 

V1 spiking activity results in an enhanced probability that each V1 spike that will be 

followed by a spike in downstream neurons in V2, in a retinotopically specific and 

gamma-phase dependent manner.  

 

In the appendices, I measure the laminar dependence of gamma power and show that it 

peaks in the middle layers, a trend opposite to that of low frequency (<10 Hz) power. In 

addition, I provide preliminary evidence that feedback from higher cortical regions could 

enhance gamma power. These features are important to understand the underlying 

network mechanisms of gamma formation. 

 

Together my thesis provides a more complete understanding of the properties of gamma 

rhythm in the LFP and its relationship with spiking activity, providing important 

constraints on its proposed function and on the mechanisms that generate it. 
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Chapter 1: Introduction 

 

We perceive the outside world through our sensory systems. Sensory stimuli are 

transduced by sensory receptors and converted into neural signals. These signals then 

travel through different neural pathways to sensory cortex, where they are processed to 

form our perception of the world. Sensory inputs form the building blocks of our 

knowledge, thoughts and memory. Deciphering how sensory information is processed in 

the brain is thus central to understanding brain function.  

 

Information is relayed between neurons by action potentials, or spikes. Individual neurons 

in sensory cortex, although specialized in their functions, are densely interconnected, 

forming neural networks. The response properties of a single neuron are shaped by the 

synaptic inputs it receives from other neurons in the network. How single neuronal 

activity relates to activity in a larger neural population is critical for understanding 

information processing in cortical circuitry. Single or multi-electrode recordings of 

spiking activity allow us to monitor the responses of a limited number of neurons, only the 

tip of a neuronal network. Other recording methods allow us to evaluate brain activity at 

larger scales of organization. One of them is through measuring the extracellular 

fluctuations in the electric field – brain rhythms.  

 

Brain rhythms are slow voltage fluctuations that are generated from the aggregate 

electrical activity of a neural population, discussed in more detail below. These signals 

provide information complementary to that of spiking activity, namely some measure of 
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neural ensemble activity (Buzsaki, 2006). Brain rhythms are typically categorized into 

different frequency bands. Because of its correlation with a variety of perceptual and 

cognitive functions in the brain, the changes in the gamma rhythm (30-80Hz) have 

attracted much attention recently. The gamma rhythm has been proposed to function as a 

temporal reference for spike timing in a neuronal population and to temporally “bind”  

spatially separated neurons into a functional neural ensemble (Engel et al., 1999; Fries, 

2009).  

 

While theories of gamma’s role in cortical function have flourished, an understanding of 

its properties has lagged. First, the spatial extent of the gamma rhythm and the similarities 

of its stimulus selectivity to local spiking activity is still ambiguous (Berens et al., 2008). 

Second, the cellular mechanisms generating gamma have revealed a role for the activity of 

inhibitory neurons (Bartos et al., 2007), and suggested a mechanism for regulating spike 

timing. For gamma to function as an active signal, it needs to modulate spiking activity 

which ultimately carries signals between neurons. However, most of these studies have 

been conducted in vitro or in the hippocampus. How gamma rhythm relates to spike 

timing in a cortical neuronal population in vivo is still unclear. This thesis focuses on 

understanding the properties of gamma—including its stimulus selectivity and relationship 

to the tuning of nearby neurons, its spatial extent, its plasticity, and its ability to modulate 

spike timing and affect the transmission of signals between cortical areas. These issues 

will be studied in the visual cortex of macaque monkeys. 
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1.1 An overview of visual cortex 

Humans and non-human primates rely on vision as the major contributor to our perception 

of the world. We experience the diversity and colorfulness of nature by eye. 

Correspondingly, a large percentage of cortex is involved in visual information processing, 

roughly 30-40% in macaque monkeys (Van Essen et al., 1992).  

 

 

Figure 1.1 Illustration of anatomical and functional organization of the visual system 
in macaque monkey. From Van Essen et al. (1992) with permission. 
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Visual cortex is located in the occipital, parietal and temporal lobes. It consists of striate 

cortex, also called primary visual cortex or V1, and a number of extrastriate visual areas, 

including V2, V3, V4, V5 (middle temporal area; MT) and others (Figure 1). Visual 

information is first processed by the retina, which relays information through the optic 

nerves to the lateral geniculate nucleus (LGN) of the thalamus, and then V1. Neuronal 

circuitry in visual cortex consists of feedforward, horizontal and feedback connections, 

with extensive converging and diverging connections (Grossberg, 2001; Lamme and 

Roelfsema, 2000; Lamme et al., 1998a; Van Essen et al., 1992).  

 

The visual system is thus a hierarchical structure (Felleman and Van Essen, 1991; Lamme 

et al., 1998a; Movshon and Newsome, 1996). Visual information is primarily relayed by 

feedforward connections from lower cortical areas to higher ones, with individual cells 

representing more complex visual features in higher areas and responding more slowly 

after stimulus onset. Visual features are processed in two parallel but interconnected 

pathways in extrastriate cortex (Nassi and Callaway, 2009). In very gross terms, the dorsal 

pathway travels to parietal cortex and mainly processes information about stimulus 

location, motion and disparity. The ventral stream terminates in the temporal lobe and 

processes information of object shape and identity (Brincat and Connor, 2004; Desimone 

et al., 1984; Logothetis and Sheinberg, 1996; Tanaka, 1996).  

 

V1 is the most widely studied and well-understood cortical area. Each neuron in V1 

responds to a specific location in the visual field, which is referred to as its spatial 

receptive field (RF). The concept of RF was first described by Stephen Kuffler in the 
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1950s who pointed out that retinal ganglion cells respond to contrast and movement in a 

specific location in the visual field (Kuffler, 1953). V1 has a retinotopic organization, so 

that neuron are arranged in an orderly map of locations in visual space (Daniel and 

Whitteridge, 1961; Dow et al., 1985; Guld and Bertulis, 1976; Tootell et al., 1988; Van 

Essen et al., 1984).   

 

In addition to locations in the visual field, neurons in V1 are sensitive to a variety of visual 

features, including orientation, spatial frequency, temporal frequency, color, contrast and 

size (Foster et al., 1985; Hubel and Wiesel, 1962, 1968; Movshon et al., 1978; Tolhurst 

and Movshon, 1975). The selectivity of these features is thought to be generated from 

feedforward connections (Andersen et al., 1990; Felleman and Van Essen, 1991; Hubel 

and Wiesel, 1962, 1965), which are modulated by horizontal connections from nearby 

neurons and feedback connections from higher cortical areas (Hupe et al., 2001b; Hupe et 

al., 1998; Lamme and Roelfsema, 2000; Lamme et al., 1998a). Receptive field properties 

are similar across the cortical layers (Lund, 1988), with this vertical organization forming 

a basic structure of cortex termed the cortical column (Horton and Adams, 2005; Lund et 

al., 2003; Mountcastle et al., 1957). Cortical columns are arranged into orderly patterns or 

functional maps for some visual features (Figure 1.2), such as stimulus orientation 

(Blasdel and Salama, 1986; Bonhoeffer and Grinvald, 1991; Koulakov and Chklovskii, 

2001; Paik and Ringach, 2011; Wiesel and Hubel, 1974), ocular dominance (Crair et al., 

1997; LeVay et al., 1985; Wiesel et al., 1974), spatial frequency (Everson et al., 1998; Issa 

et al., 2000) and perhaps color (Landisman and Ts'o, 2002; Livingstone and Hubel, 1984; 
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Xiao et al., 2003) as well. Each of these functional maps has a different spatial pattern and 

column size.  

 

 

 

 

 

Figure 1.2 Illustration of orientation preference and ocular dominance map in 
primary visual cortex. A, Orientation map with angles of preferred orientation color-
coded. B, Ocular dominance map with dark color representing contralateral and 
white color indicating ipsilateral eye dominants.  Black scale bar indicates 1 mm. 
From Hubener et al. (1997) with permission pending. 
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Because of the detailed knowledge of V1 single neuron properties, circuitry and functional 

organization, this area is an attractive model system for understanding the relationship 

between brain rhythms--a collective signal that is poorly understood--and neuronal activity.  

 

1.2 Brain rhythms 

Hans Berger first successfully measured the brain waves of human subjects in 1924 using 

the electroencephalogram (EEG) (Haas, 2003). His goal was to demonstrate that the 

electromagnetic fields of the human brain could be used for telepathy. Although the 

signals he detected were unsuccessful for this purpose, the EEG was widely adopted by 

clinicians and scientists. This is because the recordings are easy to perform and the 

rhythms detected are informative of brain state. For example, when we are deep asleep, 

the EEG consists of low-frequency, large-amplitude rhythms (Clement et al., 2008; 

Hobson and Pace-Schott, 2002; McGinty and Drucker-Colin, 1982; Poe et al., 2010); 

when we are awake and attentive, it consists primarily of fast, small amplitude rhythms 

(Jensen et al., 2007; Muller et al., 1996; Tallon-Baudry and Bertrand, 1999; Tallon-

Baudry et al., 1999).  

 

Brain rhythms  mostly reflect synchronized subthreshold activity in dendrites (Buzsaki, 

2006; Logothetis, 2003; Logothetis et al., 2007; Mitzdorf, 1985), shaped by the geometry 

and alignment of the active neurons (Buzsaki, 2006). The resultant fluctuations can be 

measured on the scalp by EEG or magnetoencephalography (MEG), intracranially with 

subdural electrodes (electrocorticography) and with electrodes inserted into the brain—

the local field potential. Generally, these rhythmic activity fluctuations can be 
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decomposed into different frequency components—delta (<4Hz), theta (4-8Hz), alpha (8-

12Hz), beta (12-30Hz), gamma (30-80Hz) and high-gamma or high-frequency activity 

(>80Hz)—although the precise frequency ranges associated with these terms vary across 

studies. 

 

1.2.1 Different rhythms correlate with different brain states 

Different frequency components of brain rhythms reflect different brain states. The delta 

rhythm (<4Hz), which is dominated by large amplitude, slow fluctuations, occurs during 

deep sleep. The theta rhythm (4-8Hz) reflects a more alert state. It is normally correlated 

with exploration and spatial navigation and is suggested to reflect sensorimotor 

integration in rats (Bland, 2004; Bland et al., 2006; Bland and Oddie, 2001).  The 

strength of theta rhythm also correlates with learning and memory and has been 

associated with long-term potentiation (LTP) in the hippocampus (Barr et al., 1995; 

Cantero et al., 2003; Jones and Wilson, 2005a, b; Siapas et al., 2005). Additionally, the 

phase of spiking within the theta rhythm can code for the animals spatial location (Ego-

Stengel and Wilson, 2007; Foster and Wilson, 2007; Jones and Wilson, 2005b). The 

alpha rhythm (8-12Hz) has been linked with relaxed or reflective states, which is a 

mentally relaxed arousal state (Bash, 1968; Cantero et al., 1999). Alpha is also observed 

during rapid eye movement (REM) sleep (Cantero et al., 2000; Crespel et al., 2009; 

Gelisse and Crespel, 2008). Compared to the lower frequency rhythms, the beta rhythm 

(12-30Hz) has a wider frequency range, and is associated with active working state, for 

example during speaking and movement (Murthy and Fetz, 1992; Poenaru et al., 1992; 

Rubino et al., 2006). An even higher frequency band, known as gamma (30-80 Hz), 
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correlates with more active brain states involved in attention, learning and working 

memory (Fries et al., 2001; Jensen et al., 2007; Jutras et al., 2009; Pesaran et al., 2002; 

Popescu et al., 2009; Tallon-Baudry, 2009; Tallon-Baudry and Bertrand, 1999; 

Womelsdorf et al., 2006). Finally, frequency components between 80-150 Hz, referred to 

as high gamma, behave similarly to local spiking activity (Ray and Maunsell, 2011a) and 

can be coordinated to the low frequency theta rhythms (Canolty et al., 2006).  

 

1.2.2 Changes in brain rhythms in mental diseases 

Brain rhythms are thought to reflect coordinated activity among large groups of neurons, 

either within one cortical area or in a more distributed network (Engel et al., 1991a; Fries 

et al., 2007). Abnormal brain rhythms could indicate a disruption of this coordination, 

which might result in severe functional deficits (Uhlhaas and Singer, 2006). Recent 

studies using EEG, MEG and event related potentials (ERP) have tested for differences in 

brain rhythms under a variety of neurological diseases. Disrupted rhythms and 

impairments in behavioral performance and cognition are observed in schizophrenia 

(Krishnan et al., 2005; Kwon et al., 1999), autism (Grice et al., 2001), Alzheimer’s 

disease (AD) (Babiloni et al., 2004a; Babiloni et al., 2004b), Parkinson’s disease 

(Mochizuki et al., 1999; Nagasaki et al., 1978) and epilepsy (Rampp and Stefan, 2006). 

For example, patients with schizophrenia have an impaired ability to perform perceptual 

grouping, and also show reduced activity in the beta and gamma frequencies of the EEG. 

Enhanced gamma activity has been observed preceding seizures. Finally, the EEG in AD 

patients shows enhanced lower frequency activity but a reduction in the gamma band 

during resting state. These observations demonstrate that understanding the basic nature 
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and mechanisms of different brain rhythms might help with the diagnosis of neurological 

diseases.  

 

1.3 The LFP  

As mentioned previously, the local field potential (LFP) measures brain rhythms on a 

more local basis, with a high impedance electrode placed in the brain (Figure 1.3A). 

Typically, these electrodes are the same as those used to detect the spiking activity of 

individual neurons, but the voltage signal is low-pass filtered (<250Hz) to capture the 

slower fluctuations of brain rhythms (Figure 1.3B). The LFP was frequently used to study 

brain function, until it fell in popularity with the advent of single-cell electrophysiology 

in the late 1950's. Over the last decade, however, LFPs have attracted renewed interest, as 

a potentially useful signal for studying the behavior of ensembles of neurons. 

 

 

 

Figure 1.3 Illustration of LFP and spiking activity recordings. (A) A high impedance 
electrode detects extracellular electrical activity of nearby neurons. (B) This raw signal is 
low-pass filtered (e.g., <250 Hz) to provide the local field potential (LFP), and high-pass 
filtered (e.g., 0.5–10 kHz) to isolate spiking activity. From Jia and Kohn (2011) with 
permission.  
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The amplitude of the LFP is related to the geometry of the active neural tissue (Buzsaki, 

2006; Logothetis, 2003). When a neuron has asymmetric dendrites distribution around 

the cell body, the current from apical dendrites to soma forms an electrical dipole. These 

fields are larger when neurons are aligned (e.g. as with pyramidal neurons in the 

hippocampus), so that the fields sum. Neurons that have irregular geometry or a distorted 

arrangement of soma and dendrite contribute less to the field potential. The electrical 

activity contributing to the field potential is thought to come primarily from synaptic and 

dendritic activity, including synaptic potentials, spike afterpotentials and intrinsic 

voltage-dependent membrane fluctuations (Haberly and Shepherd, 1973; Logothetis, 

2002; Mitzdorf, 1985).  

 

1.4 Relationship between the LFP and neuronal membrane potential 

Although the LFP is generally believed to reflect aggregated neural activity, it is critical to 

understand how it relates to membrane potential fluctuations and spiking in single neurons. 

It has been proposed that one way to infer the relationship between membrane potential 

fluctuations in individual neurons and the LFP is to predict spike trains from the phase and 

amplitude of the simultaneously recorded LFP (Galindo-Leon and Liu, 2010; Rasch et al., 

2009; Rasch et al., 2008). In general, these studies have revealed that broadband LFP 

fluctuations (4-100 Hz) predict reasonably well the slow fluctuations in neuronal firing 

rate. The phase of low frequency rhythms (<10Hz) can predict the occurrence of the 

temporally clustered spiking activity (Rasch et al., 2008), whereas higher frequency 
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rhythms including gamma make a worse prediction, with gamma amplitude being more 

informative than its phase (Galindo-Leon and Liu, 2010).  

 

A more direct approach is to perform intracellular recordings and compare the membrane 

potential to simultaneously recorded LFPs. This has revealed a significant correlation, 

both in the gamma frequencies (Hasenstaub et al., 2005) and lower frequency components 

(Okun et al., 2010; Poulet and Petersen, 2008). Assuming that the LFP correlates with 

membrane potential fluctuations of neurons in the local population, it has been suggested 

that the functional connectivity could be assessed by evaluating the relationship between 

average membrane voltage of a neuronal population in one area and the firing of neurons 

at another location through measuring the temporal correlation between individual spikes 

and the averaged amplitude of field potential before and after each spike measured at 

different locations (Nauhaus et al., 2009; Ray and Maunsell, 2011b).  

 

Together these studies suggest a strong link between low frequency fluctuations in the 

LFP and fluctuations in the membrane potential and spiking activity, and a weaker but 

measurable correlation in higher frequency bands. 

 

1.5 Relationship between LFP and BOLD fMRI signal  

In addition to its relationship with activity at the single neuron level, the LFP also has a 

potential link with the blood-oxygen level dependent (BOLD) functional magnetic 

resonance imaging (fMRI) signal. BOLD-fMRI is widely used to study human brain 

function (Buxton and Frank, 1997; Kwong et al., 1992; Ogawa and Lee, 1990; Ogawa et 
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al., 1990a; Ogawa et al., 1990b; Ogawa et al., 1998; Ogawa et al., 1992; Turner et al., 

1991). The spatial resolution of the BOLD signal is on the order of 1 cubic millimeter, 

which contains on the order of two million neurons (Powell and Hendrickson, 1981),  and 

its temporal resolution is on the order of seconds. In principle, changes in the BOLD 

indicate changes in the metabolic rate of the cells. Understanding more concretely the 

relationship between neural activity and the BOLD signal is necessary for the 

interpretation of BOLD measurements.  

 

The BOLD signal has been compared with both spiking activity and the LFP. It has been 

demonstrated that the BOLD signal is positively correlated with neuronal firing rates 

(Rees et al., 2000), although its temporal dynamics are much slower. Several studies have 

compared the BOLD-fMRI signal and the LFP under identical stimulus conditions. The 

widespread coherent nature of low frequency and gamma frequency band-limited power 

(BLP) of the LFP make it a potentially good correlate of the BOLD signal (Leopold et al., 

2003). Indeed, there is a better correspondence between LFPs and the BOLD signal than 

between spiking activity and the BOLD signal. Specifically, the broadband power of the 

LFP is better maintained than spiking activity after stimulus onset, and thus better predicts 

the temporal dynamics of the BOLD signal (Logothetis, 2003; Logothetis et al., 2001). 

Additionally, the correlation between band-limited gamma power of the LFP and the 

BOLD signal is significantly higher than that of spiking activity (Goense and Logothetis, 

2008; Kayser et al., 2004; Leopold et al., 2003; Logothetis et al., 2001; Nir et al., 2007). 

Although whether the BOLD signal is more correlated with spiking activity or the LFP 

remains controversial, previous studies have shown that understanding the properties of 
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the LFP is likely to be helpful for understanding and interpreting changes in the BOLD 

signal. 

 

1.6 The stimulus evoked and induced components of LFP 

Before investigating the properties of LFP, it is important to note that there are two types 

of stimulus driven LFPs. One is an evoked potential, which is time-locked to the onset of 

a sensory stimulus; the other is a stimulus-induced potential, which does not have a strict 

timing or phase relationship with stimulus onset (Juergens et al., 1999; Katzner et al., 

2009; Kruse and Eckhorn, 1996; Tallon-Baudry and Bertrand, 1999). Distinguishing 

between these two components of the LFP is important because of their different phase 

relationship to external stimuli and the potentially different cellular mechanisms 

underlying them.  

 

The evoked potential is typically measured by averaging across multiple responses to the 

same stimulus. As a result, all phase-varying oscillations are averaged out and only 

stimulus phase-locked components remain. The evoked LFP is prominent in the first 100 

ms after stimulus onset and is normally dominated by low frequency power. The visual 

evoked potential (VEP) (Bonds, 1982; Givre et al., 1994; Pang and Bonds, 1991; 

Schroeder et al., 1992; Schroeder et al., 1991) has been used to decode the relationship 

between a visual stimulus and aggregated neural activity of a population. The difference 

in amplitude of the evoked potentials for different visual stimuli indicates the selectivity 

of this signal (Katzner et al., 2009).  
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In contrast to the stimulus-evoked response, the stimulus-induced potential has relatively 

slow dynamics. It normally peaks 200 ms after stimulus onset (Burns et al., 2010a; 

Gruber and Muller, 2002; Tallon-Baudry and Bertrand, 1999). The induced LFP contains 

higher frequency rhythms than typically observed in the evoked potential. These rhythms 

can be elicited by sustained stimuli and any abrupt changes in visual input will interrupt 

them (Kruse and Eckhorn, 1996). Because the phases of the constituent rhythms vary 

across trials with respect to stimulus onset, the signal cancels out if averaged across trials. 

Therefore, this potential is often analyzed in the frequency domain for each trial.  

 

According to these features, we can separate the evoked and induced potentials in two 

steps: (1) defining the stimulus-evoked potential by averaging across trials and (2) 

subtracting the evoked potential from the raw LFP to isolate the induced signal.  

 

1.7 Gamma rhythm 

One signature of the LFP, shared by both its evoked and induced components, is that its 

power spectrum declines with frequency, meaning that power is dominated by lower 

frequencies (Henrie and Shapley, 2005; Petermann et al., 2009; Touboul and Destexhe, 

2010). This is still the case when networks are driven by external sensory drive or 

internal states, but less so: the power in higher frequencies increases whereas that in 

lower frequencies is suppressed. Among all the frequencies ranges, the change in gamma 

power in the driven state is particularly striking in visual cortex. Gamma is a higher 

frequency ongoing rhythm; the induced LFP thus contains much higher gamma power 

than the evoked potential, in which most of these fast oscillations are averaged out.  
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Gamma has been observed in visual cortex (Eckhorn et al., 1988; Engel et al., 1991a; 

Gail et al., 2000; Gray et al., 1989; Tallon-Baudry et al., 1996; Womelsdorf et al., 2006), 

auditory cortex (Brosch et al., 2002; Edwards et al., 2005), motor cortex (Schoffelen et al., 

2005a), parietal cortex (Pesaran et al., 2002), and hippocampus (Bragin et al., 1995; 

Csicsvari et al., 2003), and also subcortical structures. It has been found in numerous 

species, from mammals (rat, monkey, cat, human) to insects (Stopfer et al., 1997). A 

prominent gamma rhythm can provide a signature of an engaged network. In sensory 

cortex, gamma power increases with sensory drive (Adrian, 1942; Henrie and Shapley, 

2005), and a broad range of cognitive phenomena, including perceptual grouping (Tallon-

Baudry and Bertrand, 1999), attention (Fries et al., 2001), working memory (Pesaran et 

al., 2002) and learning (Bauer et al., 2007). Irregular gamma activity has been associated 

with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, 

schizophrenia, and epilepsy (Uhlhaas and Singer, 2006).  

 

1.8 Response properties of gamma – a comparison with neurons in V1 

As a signal that correlates with a variety of cognitive functions, it is important to 

understand the response properties of the gamma rhythm. Taking advantage of the widely 

studied neuronal response properties in V1, researchers have compared the basic tuning 

properties of gamma with that of neuronal spiking activity. Gray and colleagues found that 

the gamma components of the LFP are orientation selective (Gray and Singer, 1989), 

similar to individual neurons. The orientation tuning of gamma suggests that there might 

be a specific neural circuit that gives rise to its preference. Because they found the 
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orientation preference of gamma to be similar to that of local spiking activity, Gray and 

colleagues suggested that gamma reflects activity in an orientation column, roughly ~250 

µm in extent (Horton and Adams, 2005).  

 

In recent years, a number of studies have further investigated the stimulus selectivity of 

gamma and compared it to local neuronal activity. Gamma power is selective for a number 

of stimulus attributes. The orientation tuning of gamma in V1 has been confirmed in 

several studies (Berens et al., 2008; Frien and Eckhorn, 2000; Frien et al., 2000; Siegel 

and Konig, 2003), and gamma has been shown to be tuned for spatial and temporal 

frequencies (Kayser and Konig, 2004). In MT, gamma is tuned for speed and direction 

(Liu and Newsome, 2006). In all of these studies, selectivity is most prominent in the 

gamma and higher frequency ranges, but not in the lower frequency bands of the LFP.  

 

Neurons in V1 are also sensitive to stimulus size. Responses are strongest when the size of 

a preferred stimulus matches the classical receptive field (CRF). Stimuli outside the CRF 

can modulate neuronal responses in the receptive field center (Hubel and Wiesel, 1965; 

Kapadia et al., 2000; Knierim and van Essen, 1992; Maffei and Fiorentini, 1976; Nelson 

and Frost, 1985; Yu et al., 2003). This modulation contributes to contextual effects (Levitt 

and Lund, 1997; Zipser et al., 1996) and perceptual grouping (Eckhorn, 2000; Schmidt et 

al., 1997) in lower visual cortex. In most cases, the response evoked by stimuli in the CRF 

are suppressed by stimuli outside (in the "surround"), an effect termed surround 

suppression (Angelucci et al., 2002a; Angelucci et al., 2002b; Cavanaugh et al., 2002a, b; 

Haider et al., 2010; Hubel and Wiesel, 1965; Sceniak et al., 2002; Xing et al., 2005). The 
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source of this suppression is unclear. It has been proposed to involve inhibition recruited 

by long-range horizontal connections (Angelucci and Bressloff, 2006; Angelucci et al., 

2002a; Das and Gilbert, 1995) or feedback from higher cortical areas (Angelucci and 

Bressloff, 2006; Bair et al., 2003), or from reduced excitatory drive from LGN (Ozeki et 

al., 2004; Webb et al., 2005).  

 

Gamma is modulated differently by stimulus size from neuronal responses. Gamma does 

not show surround suppression, instead it grows monotonically with increasing stimulus 

size (Bauer et al., 1995; Gieselmann and Thiele, 2008), and its peak frequency shifts lower 

(Gieselmann and Thiele, 2008; Kang et al., 2009; Ray and Maunsell, 2011a). In contrast to 

gamma, higher frequency components of the LFP show surround suppression similar to 

local spiking activity. If surround suppression involves some form of lateral and feedback 

inhibition, the monotonic increase in gamma power with enlarging size suggests that the 

strength of gamma might reflect the level of inhibition in the network.  

 

Stimulus contrast can also modulate neuronal responses in V1. Lowering contrast reduces 

neuronal responses and leads to an apparent increase in the CRF (Cavanaugh et al., 2002a; 

Sceniak et al., 1999). The broadband power of the LFP is modulated similarly by stimulus 

contrast (Logothetis et al., 2001), with a particularly strong effect in gamma band power. 

Indeed, gamma power grows monotonically with stimulus contrast (Henrie and Shapley, 

2005), whereas the responses of single neurons show saturation (Albrecht and Hamilton, 

1982; Carandini et al., 1997). The peak frequency in the gamma range also depends on 
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contrast: with lower contrast, the peak frequency of gamma shifts lower (Ray and 

Maunsell, 2010).  

 

The selectivity of gamma power in V1, which is comparable in its richness to single 

neurons, suggests that gamma could be used a useful neural signal to understand the 

response properties of a neural ensemble. However, given differences in the selectivity of 

neurons and gamma for stimulus size and contrast, it is not clear whether gamma reflects 

the activity of a local ensemble, a more distributed one, or the level of inhibitory activity 

in the network. 

 

1.9 Spatial scale of gamma rhythm 

To understand and interpret the gamma rhythm, it is important to know its spatial extent, 

which is governed both by passive volume conduction and the scale of neural ensemble 

that is involved in its generation. 

  

1.9.1 Passive signal transmission in the brain 

As an extracellular electrical signal, gamma could be passively transmitted by volume 

conduction. Volume conduction is defined as the transmission of the electrical field 

generated from the current source of the signal to the recording sensor through brain tissue, 

the skull and the scalp (Legatt et al., 1980). Within the brain, the passive conduction of 

visually evoked LFPs, is limited within 300 µm of the recording site (Katzner et al., 2009; 

Xing et al., 2009), which is similar as multi-unit activity (MUA) detected from the same 

recording electrode (Henze et al., 2000). These conclusions were drawn based on 
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comparisons between LFPs and the responses of local MUA. However, a direct 

measurement showed that the passive spread of the field potential can be more than 1 cm 

(Kajikawa and Schroeder, 2011). These different conclusions of passive propagation 

indicate that the estimation of volume conduction based on comparison with response 

properties of spiking activity could be very different from direct measurement. The 

contribution of field potentials that passively conducted from distant sites may not be large 

enough to affect the response properties of locally generated LFP. 

 

Because neurons in the brain are buried in glia and other capacitive tissues, one would 

expect that the brain tissue could have both conductor and capacitor properties. The time 

constant of a capacitor could act as a signal filter which biases signal transduction towards 

signals with longer oscillating cycles. As a result, the spatial extent of the LFP, when 

passively transmitted, could be frequency dependent. This hypothesis proposes that the 

high frequency components of the LFP, whose oscillation is fast, may not get effectively 

transmitted with the filter property of the brain tissue compared to the low frequency 

components, which could give rise to different spatial extents from the current source. To 

test this hypothesis, Logothetis and colleges measured the cortical impedance in the grey 

matter as a function of frequency, and found surprisingly that the cortical impedance can 

be viewed as a pure-resistive conductor. These results suggest that the grey matter, even 

though contains massive fat and proteins, is dominated by its conductivity rather than a 

capacitor that filters higher frequency signals (Kruse and Eckhorn, 1996; Logothetis et al., 

2007; Ranck, 1963). Therefore, based on the previous findings that the passive 

transmission of evoked LFP signal, which is dominated by low frequency fluctuations, is 
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reflecting neural activity within 300 µm of the electrode tip, the spatial extents of higher 

frequency components should be similar but not less.  

 

However, since these conclusions are based on evoked potentials and the stimulus induced 

activity might have a different spatial extent of neural ensemble that actively generating 

the rhythms, the spatial resolution of the induced gamma rhythm is still unclear.  

 

1.9.2 Discrepancy in the estimation of spatial spread of gamma 

Leaving aside the issue of the volume conduction, numerous studies have tried to estimate 

the spatial extent of neural activity that gives rise to gamma. However, the spatial spread 

of gamma rhythm of LFP remains unclear, with different conclusions reached, depending 

on the approaches used and the stimulus paradigm.  

 

Initially, the spatial spread of gamma was estimated from its spatial coherence (Juergens et 

al., 1999; Mitzdorf, 1985). Because gamma was found to be coherent between cortical 

sites separated by many millimeters, the signal was thought to reflect a broad summation 

of neural activity. This idea faded with the observation that gamma is orientation-tuned, 

which suggests a more local source (about 250 µm (Gray and Singer, 1989). This 

observation was confirmed by the findings that gamma and spiking activity recorded on 

the same electrode had similar stimulus preferences (Frien and Eckhorn, 2000; Frien et al., 

2000; Katzner et al., 2009; Siegel and Konig, 2003) (Liu and Newsome, 2006).  
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However, other studies failed to find such similarity: a comparison of the object selectivity 

of the LFP with spiking activity in inferotemporal cortex (IT) showed that the LFP 

preference was dissociated from spikes for frequency components below 100 Hz, and 

better predicted by the weighted average of spiking activity within 3 mm of the recording 

electrode (Kreiman et al., 2006). Even in V1, the orientation preference of gamma 

components of the LFP have been found to be quite different from local spiking activity 

(Berens et al., 2008), leading to the suggestion that gamma reflects activity that extends 

for roughly 600 µm.  

 

The existing literature thus paints a confusing and seemingly contradictory of the spatial 

extent of gamma and the size of the neural ensemble it reflects. Gamma is coherent over 

long distances but well-tuned, with a preference that sometimes matches local spiking 

activity but, in other studies, does not. Resolving this confusion is a prerequisite for 

understanding how gamma may contribute to cortical function. This issue will be 

addressed in Chapter 2 of the thesis.  

 

1.10 Cellular mechanisms of gamma  

To interpret changes in the gamma rhythm, we need to understand the neural activity that 

is involved in its generation, specifically, the neuronal substrates and circuitries. 

  

1.10.1 Neuronal substrates involved in gamma generation 

Numerous studies in the hippocampus and neocortex have shown that GABAergic 

interneurons are important for generating gamma, and that the recurrent connections 
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between excitatory and inhibitory neurons affect the strength and maintenance of the 

rhythm (Bartos et al., 2007; Buzsaki and Chrobak, 1995; Cardin et al., 2009; Traub et al., 

2004; Wang and Buzsaki, 1996; Whittington et al., 2011; Whittington et al., 1995). The 

relevant inhibitory neurons can provide synchronized inhibitory postsynaptic potentials 

when activated (Hasenstaub et al., 2005; Traub et al., 2004; Whittington et al., 1995). 

Because they innervate the cell body or axon initial segment of pyramidal neurons, the 

rhythmic firing of fast-spiking GABAergic interneurons (Cardin et al., 2009), such as 

basket cells and chandelier cells, can rhythmically hyperpolarize or shunt the pyramidal 

cell, and thus modulate the timing of action potentials (Buzsaki et al., 1983; Csicsvari et 

al., 2003; Lytton and Sejnowski, 1991; Mann et al., 2005; Miles et al., 1996; Penttonen et 

al., 1998; Vida et al., 2006).  

 

The frequency of the gamma rhythm is related to the discharge rate of interneurons and 

the conduction delay between neurons (Whittington et al., 1995). Gamma fluctuations 

can be induced in interneuron networks in hippocampal slices by tonic activation of 

metabotropic receptors (mGluRs) (Whittington et al., 1995), kainite receptors 

(Cunningham et al., 2003; Fisahn, 2005; Fisahn et al., 2004; Hajos et al., 2000) and 

muscarinic acetylcholine receptors (mAChRs) (Fellous and Sejnowski, 2000; Fisahn et 

al., 1998), and can be effectively blocked by antagonists of GABAA receptors (Traub et 

al., 2003; Traub et al., 1996a). Gamma can also be induced in vivo by directly activating 

fast-spiking interneurons, using optogenetic tools (Cardin et al., 2009).  
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In addition to interneurons, some studies find that a unique type of pyramidal-shaped 

neuron can contribute to generating gamma as well. Gray and McCormick have found 

that ‘chattering cells’, a distinctive subtype of pyramidal neurons located in the 

superficial layer of visual cortex, can intrinsically fire in the gamma frequency range with 

visual stimulation or simple intracellular current injection (Gray and McCormick, 1996). 

The nature of these chattering cells is still unclear, but they may contribute to the gamma 

rhythm induced by visual stimuli (Cardin et al., 2009; Cunningham et al., 2004b; Steriade 

et al., 1998). 

 

1.10.2 Different circuitry models proposed for gamma generation 

Building on the experimental data that revealed the neuron types involved in gamma 

generation, different network models have been proposed to account for the formation of 

gamma synchronization in local neuronal circuits. The simplest model is an interneuron 

network gamma (ING), which suggests that gamma is generated by activating fast-

spiking interneurons with tonic excitation, driving a recurrently connected interneuron 

network. This network mechanism of gamma generation has been received experimental 

support in hippocampus slices (Csicsvari et al., 2003) and the cerebellum (Middleton et 

al., 2008). In the ING model, the frequency of gamma is determined by the strength of 

excitatory drive and the kinetics of postsynaptic potentials in the inhibitory network 

(Traub et al., 1996a; Whittington et al., 2011; Whittington et al., 1995). A signature of 

this model is that the generation of gamma is heavily dependent on the degree of 

synchrony in the tonic excitatory drive. When different interneurons in the network are 

depolarized asynchronously, the gamma rhythm is disrupted (Wang and Buzsaki, 1996). 
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One proposed mechanism to rescue this unsteady state is to have gap junctions between 

interneurons (Bartos et al., 2007; Buhl et al., 2003; Draguhn et al., 1998; Fukuda and 

Kosaka, 2000; Fukuda et al., 2006; Gibson et al., 1999; Hormuzdi et al., 2001; Nase et al., 

2003; Traub et al., 2004; Traub et al., 2001). The fast equalization of membrane potential 

discharge through electrical-coupling makes the inhibitory interneuron network less 

sensitive to heterogeneity in its excitatory drive.  

 

An alternative model of gamma generation is called pyramidal interneuron network 

gamma (PING). This model requires reciprocal connections between the inhibitory 

interneurons and excitatory neurons (Traub et al., 1997; Whittington et al., 2001; 

Whittington et al., 1997) and, thus, arguably more realistic in the cerebral cortex. This 

model proposes that the strong, phasic activation of inhibitory neurons by pyramidal 

neurons can generate bursts of spikes in the gamma frequency in the inhibitory neurons, 

which in turn regulates the firing pattern of the excitatory neurons and, as a consequence, 

the timing of spikes in the interneurons themselves. For the PING model to generate 

gamma, there are two prerequisites: first, strong activation of inhibitory neurons by 

excitatory neurons (Traub et al., 1997); second, the relative firing rate of excitatory and 

inhibitory neurons should be balanced, because high firing rates of the interneurons can 

reduce the firing probability of excitatory neurons and terminate the rhythm (Tiesinga 

and Sejnowski, 2009). The frequency of gamma rhythm generated by the PING network 

depends on the decay time constant of postsynaptic currents and the delay time of the 

reciprocal connections between excitatory and inhibitory neurons. The PING network is 

more tolerant of variability in excitatory inputs.  
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An additional mechanism of gamma generation is called persistent gamma (PG). 

Chemical activation of metabotropic glutamatergic, kainite and muscarinic acetylcholine 

receptors can induce long-lasting gamma rhythms. The mechanism of this form of 

gamma generation is intermingled with the ING and PING models, but has distinctive 

features. First, PG rhythms do not require a recurrently connected interneuron network 

(Buhl et al., 2003; Hormuzdi et al., 2001; Wulff et al., 2009). Second, in PG, the principal 

neurons have very low firing rates, notably different from the PING model (Cunningham 

et al., 2003; Cunningham et al., 2004a; Cunningham et al., 2004b; Gillies et al., 2002). 

The mechanisms of PG model are relatively unclear. 

 

Gamma rhythm can be coherent over long distance (Frien and Eckhorn, 2000; Leopold et 

al., 2003; Murthy and Fetz, 1992). To form a coherent network requires a short delay 

time among the local generators. Large network models (Bartos et al., 2007; Buzsaki and 

Chrobak, 1995; Wang and Buzsaki, 1996) suggest that the local gamma-generating 

networks, discussed above, can be coupled by long-range horizontal connections (Traub 

et al., 1996b) or gap junctions among inhibitory interneurons (Gibson et al., 1999).  

 

It is important to note that because the amplitude of the LFP is sensitive to the alignment 

of signal generators, the activity of aligned pyramidal neurons in cortex will be the 

primary contributor to the LFP, while the activity of interneurons with their star-shaped 

dendrites will contribute less. Therefore, the strength of gamma in the LFP is more likely 

to be directly dependent on input to pyramidal neurons from interneurons. 
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1.11 Gamma rhythm and spike timing 

It is well-established that gamma correlates with engaged or driven neural networks, but 

it is less clear whether it is a simple by-product of activity or has an important functional 

role. This is not for lack of proposals: numerous functions have been attributed to this 

rhythm. Most of these hinge on a relationship between gamma and the timing of spiking 

activity in nearby neurons. Since spikes carry signals between neurons and networks, 

gamma can only play a role in information processing by influencing these events. 

Therefore, to understand the function of gamma, it is critical to analyze the temporal 

relationship between spikes and gamma. 

 

Numerous studies have found phase modulation of spike timing in gamma frequencies 

(Csicsvari et al., 2003; Hasenstaub et al., 2005; Pesaran et al., 2002), suggesting a 

relationship between gamma and spike timing under certain circumstances. A phase-

locking between gamma and spike timing of excitatory cells could arise because local 

inhibitory neurons fire action potentials preferentially at a particular phase of the gamma 

cycle, makes the spiking of excitatory neurons more likely to occur at an offset phase 

when inhibition is weaker. (Fries et al., 2007; Hasenstaub et al., 2005). Depending on the 

cellular mechanisms generating gamma, the spike timing of excitatory and inhibitory 

neurons could have different phase relationships with the gamma rhythm. If the gamma 

rhythm is generated solely based on a synchronized inhibitory interneuron network, the 

spike timing of the interneurons should occur at the trough of the gamma rhythm where 

network inhibition is the strongest, while the phases of excitatory neurons is ambiguous 
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(Tiesinga and Sejnowski, 2009). If gamma is generated by the PING model, the 

interneurons are depolarized by the pyramidal neurons, and thus the spike timing of 

inhibitory neurons tends to be delayed relative to that of the excitatory neurons (Csicsvari 

et al., 2003; Hasenstaub et al., 2005). 

 

There are several standard ways to measure the timing relationship between gamma and 

spikes. One way is by calculating spike-field coherence (SFC), which is a correlation 

analysis between the amplitudes of oscillations in the LFP and the timing of spikes in a 

spike train in the frequency domain. When the SFC is high at certain frequency, this 

means spikes are phase-locked to the oscillation at that frequency. Another way to 

evaluate the timing relationship between gamma and spikes is by calculating spike-

triggered averaging of the LFP. When spikes occur at a consistent phase on the gamma 

rhythm, averaging LFP epochs around each spike will remove the rhythms that have no 

phase relationship with spikes and leave only the rhythms that spikes are phase-locked to. 

An alternative way to check at which phase individual spikes occur on the gamma rhythm 

is by band-limited filtering of gamma rhythm and then deriving the phases where spikes 

occur accordingly. Combining these calculations provide a measure of the temporal or 

phase relationship between spike trains and the gamma rhythm.  

 

Studies using these measures have revealed weak but measurable coupling between 

gamma and spikes, which increases when gamma power is elevated (Fries et al., 2001; 

Fries et al., 2008; Pesaran et al., 2002). This coupling is only meaningful, however, if the 

two signals are measured independently. LFPs and spikes are often recorded from a 
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single electrode. Because extracellular action potential waveforms have a broad 

frequency spectrum, including frequency components below 250Hz, this energy can leak 

into the LFP (David et al., 2010; Zanos et al., 2011). That is, the low-pass filtering of the 

extracellular voltage signal, which is used to isolate the LFP (Figure 1.3), may not 

remove entirely the action potential waveforms. The resultant contamination would 

introduce spurious correlations: the timing of spikes will appear to be related to 

fluctuations in LFP power for the simple reason that a remnant of the spike waveform 

remains in that signal. In our analysis, we focused on the low gamma rhythm, which is 

between 30-50Hz (Ray and Maunsell, 2011a), where this contamination is minimal. 

Further, when measuring the relationship between gamma and spiking activity, we used 

signals recorded by adjacent electrodes. 

 

1.12 Proposed functional roles of gamma  

Based on its regulation of spike timing, numerous theories have suggested that the 

gamma-coordination of spiking activity is central to cortical processing. 

 

1.12.1 Temporal coding (phase of spike coding) 

Information encoded in spike timing is referred to as ‘temporal coding’, in contrast to the 

rate coding theory, which proposes that the number of spikes in a time window encodes 

information. The phase-modulation of spike timing at gamma frequencies has also been 

suggested function as a temporal coding mechanism (Borgers et al., 2005; Buzsaki and 

Chrobak, 1995; Fries et al., 2007; Nikolic, 2007; Tiesinga et al., 2008; Vinck et al., 2010), 
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since the degree of phase-locking depends on stimulus properties and brain states (Fries et 

al., 2008; Gregoriou et al., 2009; Lepage et al., 2011; Pesaran et al., 2002; Wu et al., 2008).  

 

The different gamma phases on which spikes occur has also been proposed as a coding 

mechanism for stimulus strength (Masquelier et al., 2009). Because different phases of 

the gamma cycle may reflect different strength of excitation and inhibition in the local 

network (Hasenstaub et al., 2005; Knoblich et al., 2010), strong and weak inputs may 

result in different timing of output spikes within the gamma cycle (Fries et al., 2007). A 

study using recordings from behaving monkeys has shown that neurons in visual cortex 

can encode stimulus orientation in ‘phase-of-firing’ relative to gamma cycle (Vinck et al., 

2010). However, the detailed mechanism of how the brain could decode information 

carried in spike phase is still unclear.  

  

1.12.2 Binding 

Although the detailed information of an object is processed by different neurons, we 

always perceive the object as a whole. How we generate a coherent percept given the 

distributed processing in the brain is known as the binding problem (Treisman, 1996; 

Wolfe and Cave, 1999).  

 

Because of its sensitivity to stimulus global structure, the synchronized gamma frequency 

activity has been proposed to bind together the information processed in different neuronal 

groups or brain regions to create a coherent percept (Csibra et al., 2000; Keil et al., 1999; 

Singer, 1999; Singer and Gray, 1995; Uhlhaas et al., 2009). Various manipulations that 
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disrupt stimulus structure have been shown to affect gamma activity. Gamma band 

synchronization of neuronal activity is stronger when two neurons are stimulated with a 

single bar at their preferred orientation (Gray et al., 1989), rather than two separate bars. 

Gamma activity is reduced when grating stimuli are masked with noise (Zhou et al., 2008) 

and suppressed on the border between a figure and background compared to a 

homogeneous background alone (Gail et al., 2000). Power is also suppressed by plaid 

stimuli compared with single drifting gratings (Lima et al., 2010). These observations 

that gamma depends on the global structure of a visual stimuli are the basis of suggesting 

that gamma contributes to binding.  

 

This binding hypothesis suggests that gamma-band synchronization of neuronal 

responses can link the representation of a single sensory input (e.g. a visual object) 

(Engel et al., 2001; Engel et al., 1997; Singer, 1999; Singer and Gray, 1995). At the heart 

of this proposal is the concept that gamma can influence the spike timing of a neuronal 

group. When different neurons are phase-locked to the same gamma rhythm, the timing 

of spike are more coordinated (Tiesinga et al., 2008). These synchronized spikes can have 

a stronger impact on downstream neurons (Konig et al., 1996; Salinas and Sejnowski, 

2000, 2001).  

 

1.12.3 Communication through coherence (CTC) 

Certain frequency bands of the LFP--including but not limited to gamma--can form 

coherent rhythms across cortical areas and thus potentially function as a communication 

channel. Propagating waves have been observed in motor cortex, auditory cortex and 
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hippocampus (Colgin et al., 2009; Lubenov and Siapas, 2009; Reimer et al., 2011; Rubino 

et al., 2006; Takahashi et al., 2011). Long-range coordination of rhythms has been 

observed between different cortical  and sub-cortical regions (Buschman and Miller, 2007; 

Gregoriou et al., 2009; Montgomery and Buzsaki, 2007; Popescu et al., 2009; Schoffelen 

et al., 2005b) and between hemispheres.  

 

Building on these observations, the ‘communication through coherence’ hypothesis 

proposes that a coherent gamma rhythm may influence or mediate signal communication 

and propagation between two neuronal populations (Fries, 2005, 2009; Womelsdorf et al., 

2007). Specifically, this hypothesis states that ‘neuronal communication between two 

neuronal groups mechanistically depends on coherence between them and the absence of 

neuronal coherence prevents communication’ (Fries, 2005). Fries proposed that because 

gamma phase reflects neuronal excitability, only when the two neuronal groups are 

coherent in a good phase relationship which means the synaptic inputs from one group 

arrive at the most excitatory phase of the other, will ‘maximum communication efficiency’ 

be attained only (Womelsdorf et al., 2007). This hypothesis suggests that altering the 

relative phase between the two neuronal groups can be used as a mechanism to 

selectively route information. Modeling studies have confirmed that the relative phase 

between two neuronal groups can effectively gate information (Tiesinga and Sejnowski, 

2010). Enhanced long-range coherence has been correlated with allocation of spatial 

attention (Gregoriou et al., 2009). However, there is limited physiological evidence 

supporting the idea of coherence directly mediating communication, except for the finding 
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of relative phase dependent correlation between pairs of neurons (Womelsdorf et al., 

2007). 

 

1.12.4 The other side of the coin - evidence anti-gamma functions 

A number of recent studies have taken a more critical view of the role of gamma, testing 

whether it has the properties required for its purported functions. One study showed that 

the frequency of gamma can vary between nearby sets of neurons, limiting its ability to 

function as a global timing reference (Ray and Maunsell, 2010). Another has shown that, 

at a single site, the gamma rhythm is not 'auto-coherent', meaning that its absolute phase 

changes with time, a negative feature for a reference clock or integrative signal (Burns et 

al., 2010b). In this vein, it is also worth noting that gamma fluctuations are small, which 

are roughly 10-20 microvolts on average, and account for only 0.5-10% of the total 

power in the LFP. These observations raise the possibility that gamma could simply be a 

resonant frequency that has no special function, a by-product of a recurrently connected 

neuronal network (Burns et al., 2010b; Ray and Maunsell, 2010; Schroeder and Lakatos, 

2009). 

 

1.13 Brain rhythms and neuronal correlation 

1.13.1 Neuronal correlation and population coding 

Neuronal correlation describes the phenomenon of shared fluctuations of neuronal 

responses, and have been widely observed in the central and peripheral nervous systems 

(Alonso et al., 1996; Bair et al., 2001; Cohen and Kohn, 2011; Kohn and Smith, 2005; 

Mastronarde, 1983; Schneidman et al., 2006; Shlens et al., 2006; Stopfer et al., 1997; 
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Zohary et al., 1994). Shared fluctuations in neuronal responses occur in different time 

scales, from many seconds to very brief timescales, more commonly referred to as 

synchrony. Correlations can strongly affect the encoding of information in population 

responses (Pouget et al., 2000).  

 

1.13.2 Brain rhythms and neuronal correlation: an implicit relationship with 

synchrony 

Several recent studies have reported a link between brain states and neuronal correlation 

(Kohn et al., 2009). Because cortical rhythms also vary with brain state, this suggests a 

potential relationship with neuronal correlation and the rhythms of the LFP, which we will 

address in the discussion session.  

 

In general, slow timescale correlations are more prominent in the resting state, and 

suppressed in the active state or with stimulus drive. Studies using whole-cell and 

extracellular recording in barrel cortex of awake mice have shown that during the quiet 

wakefulness state, membrane voltage fluctuations were dominated by low frequency 

activity (1-5Hz) and these fluctuations are correlated with the LFP and EEG (Poulet and 

Petersen, 2008). The cross-correlation of membrane potential between pairs of neurons 

during the resting state was significantly higher than that during whisker movement 

(Gentet et al., 2010; Poulet and Petersen, 2008). This suggests that arousal or engagement 

with the environment decorrelates neuronal activity. Similar observations in behaving 

monkeys revealed that spatial attention can reduce neuronal correlations (Cohen and 

Maunsell, 2009; Fries et al., 2008; Mitchell et al., 2009). Studies in the visual cortex have 
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also revealed that external stimulus drive can decorrelate slow neuronal fluctuations 

(Kohn and Smith, 2005; Lampl et al., 1999; Smith and Kohn, 2008).  

 

Numerous studies have reported changes of gamma activity with brain states (Jensen et al., 

2007; Tallon-Baudry, 2009) and several findings have shown that gamma-band 

synchronization of neuronal responses is correlated with elevated gamma power in the 

EEG or LFP (Fries et al., 2008; Herculano-Houzel et al., 1999). During active states or 

with the allocation of visual attention, gamma-band neuronal synchronization is enhanced 

along with gamma power. Thus, unlike long-time scale correlation, neuronal correlation at 

gamma frequencies is enhanced during active states or external stimulus drive. 

 

While gamma-band synchronization has been linked to changes in brain state, the 

relationship between brief time-scale neuronal correlation (synchrony) and brain rhythms 

is less clear. Indeed, there is limited evidence for a relationship between synchrony and 

brain rhythms or states, except for some weak or negative observations (Fries et al., 2008; 

Roy et al., 2007; Samonds and Bonds, 2005). Since coordinating spike timing on a 

millisecond timescale in a group of neurons can permit the effective summation of 

synaptic currents and enhance signal transmission (Bruno and Sakmann, 2006; Tiesinga et 

al., 2008; Usrey et al., 1998), determining whether there is a link between brain state 

modulation of gamma and changes in ensemble spike timing is critical for understanding 

the function of gamma rhythm. 

 

1.14 Questions to be address in the thesis 
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This thesis seeks to elucidate the contribution of gamma to relaying signals between early 

visual cortical areas. To do so, we must address several limitations in our current 

understanding. First, we need to determine the spatial extent of gamma and how it relates 

to the functional properties of local neurons. Second, we need detailed and quantitative 

assessment of the relationship between spike timing and gamma, and how this relationship 

affects the timing of events in a larger, distributed neuronal ensemble. Third, we need to 

test directly whether gamma-associated changes in ensemble spiking have an effect on 

transmitting signals between synaptically-coupled networks of neurons.  

 

My thesis addresses each of these issues in turn. Chapter 2 compares the tuning of gamma 

with local spiking activity and evaluates its spatial coherence under different stimulus 

conditions in primary visual cortex. I find there are two signals with distinct origin and 

response properties contributing to the detected gamma power: one is a local signal that is 

predictable by higher frequencies; the other is an actively generated gamma rhythm which 

has the potential to form a spatially extensive global rhythm. This global gamma rhythm 

has highly selective tuning properties and the preference of this rhythm is shared across a 

large cortical region. The relative contribution of the two components is flexible and 

depends on visual input. Therefore, the tuning properties and the spatial extent of the 

gamma rhythm are not fixed. Chapter 3 tests a potential mechanistic basis for the shared 

preference of the global gamma rhythm, using an adaptation protocol. It also presents a 

full characterization of the effect of prolong adaptation on other frequency bands of the 

LFP, revealing that each frequency band shows a distinct form of plasticity. In Chapter 4, I 

examine the relationship between gamma and spike timing at the level of single neurons 
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and a large neuronal population, and determine the consequence of this interaction on 

signal propagation between areas V1 and V2. 
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2.1 Abstract 

 

The gamma frequencies of the local field potential (LFP) provide a physiological 

correlate for numerous perceptual and cognitive phenomena and have been proposed to 

play a role in cortical function. Understanding the spatial extent of gamma and its 

relationship to spiking activity is critical for interpreting this signal and elucidating its 

function, but previous studies have provided widely disparate views of these properties. 

We addressed these issues by simultaneously recording LFPs and spiking activity using 

microelectrode arrays implanted in the primary visual cortex of macaque monkeys. We 

find that the spatial extent of gamma and its relationship to local spiking activity is 

stimulus dependent. Small gratings, and those masked with noise, induce a broadband 

increase in spectral power. This signal is tuned similarly to spiking activity and has 

limited spatial coherence. Large gratings, on the other hand, induce a gamma rhythm 

characterized by a distinctive spectral "bump", which is coherent across widely separated 

sites. This signal is well tuned, but its stimulus preference is similar across millimeters of 

cortex. Gamma thus arises from two sources that reflect different spatial scales of neural 

ensemble activity. Our results show that there is not a single, fixed ensemble contributing 

to gamma and that the selectivity of gamma cannot be used to infer its spatial extent.  
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2.2 Introduction  

LFPs reflect coordinated synaptic input and slow intrinsic conductances in neurons 

(Buzsaki, 2006; Mitzdorf, 1985) and thus provide a potentially useful view of neuronal 

ensemble activity. Gamma components of the LFP provide a physiological correlate of 

perceptual and cognitive phenomena (Fries et al., 2008; Gail et al., 2004; Pesaran et al., 

2002; Wilke et al., 2006; Womelsdorf et al., 2006) and have been suggested to play an 

active role in cortical processing. 

 

The spatial extent and functional specificity of gamma is a critical constraint on the role it 

may play in cortical processing. To function as a global reference signal (e.g. an internal 

clock;(Fries et al., 2007; Hopfield, 2004), gamma would need to form a widespread, 

coherent rhythm, potentially shared among neuronal ensembles with different response 

properties. To select specific subsets of neurons (e.g. those representing an attended 

location; (Fries, 2009)), gamma would need to be limited in extent. To link distributed 

neurons into an ensemble (e.g. binding or dynamically routing information; Gray, 1999; 

(Buzsaki, 2006; Colgin et al., 2009; Gray, 1999), gamma would need to target specific 

subsets of cells but also be coherent across locations.    

 

The spatial extent and functional specificity of gamma are unclear. Recently, Katzner et 

al. (2009) showed that the evoked LFP, a stimulus-locked transient response, reflects 

neural activity within 250 microns of the recording site. Xing et al. (2009) showed that 

this "spatial footprint" reflects the volume conduction of extracellular fields (estimated to 

be 250 microns) and the extent of the neural ensemble generating the signal. However, 
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these measures of passive propagation and the evoked LFP do not directly address the 

extent of gamma. This is because gamma is an induced signal—an intrinsic rhythm 

generated by specific neurons and circuits (see Bartos et al., 2007 and Whittington et al., 

2010 for review) that are modulated by, but not time locked to, stimulus drive (Brosch et 

al., 2002; Juergens et al., 1999; Kruse and Eckhorn, 1996; Siegel and Konig, 2003; 

Tallon-Baudry, 2003).   

 

Previous studies have provided disparate views of the extent and functional specificity of 

gamma. In primary visual cortex (V1), gamma is stimulus selective (Berens et al., 2008; 

Frien et al., 2000; Gray and Singer, 1989; Henrie and Shapley, 2005; Liu and Newsome, 

2006; Siegel and Konig, 2003), suggesting that the relevant circuits have a limited extent: 

a spatially distributed origin would involve averaging ensembles with different 

preferences and should thus produce a relatively unselective signal. However, gamma has 

sometimes (Katzner et al., 2009; Liu and Newsome, 2006) but not always (Berens et al., 

2008; Kreiman et al., 2006) been found to have the same preference as spiking activity 

recorded at the same site. As a result, it has been suggested to reflect activity from a few 

hundred microns up to millimeters of the electrode. Another approach to estimating the 

extent of gamma is to measure it simultaneously at different locations. This has revealed 

a signal that is coherent across many millimeters of cortex (Frien and Eckhorn, 2000; 

Juergens et al., 1999; Leopold et al., 2003) and even across regions (Murthy and Fetz, 

1992; Pesaran et al., 2002; Popescu et al., 2009; Schoffelen et al., 2005a). The presence 

of gamma in scalp recordings also suggests a widespread coherent signal (Tallon-Baudry, 

2003).  
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To clarify the spatial extent of gamma and its relation to neuronal activity, we measured 

both signals simultaneously using multielectrode arrays implanted in the superficial 

layers of macaque V1. We compared the response properties of gamma across locations 

and, at each site, with local spiking activity, for a range of stimulus manipulations.  
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2.3 Materials and methods  

 

Animal preparation and electrophysiology 

We recorded data from 8 anesthetized, adult male macaque monkeys (macaca 

fascicularis). The techniques we use have been described in detail previously (Smith and 

Kohn, 2008). In brief, anesthesia was induced with ketamine (10 mg/kg) and maintained 

during preparatory surgery with isoflurane (1.5-2.5% in 95% O2). Anesthesia during 

recordings was maintained with sufentanil citrate (6-18 µg/kg/hr, adjusted as needed for 

each animal). Vecuronium bromide (0.1 mg/kg/hr) was used to suppress eye movements. 

Drugs were administrated in normosol with dextrose (2.5%) to maintain physiological ion 

balance. Physiological signs (ECG, blood pressure, SpO2, end-tidal C02, EEG, 

temperature, and urinary output and osmolarity) were monitored to ensure adequate 

anesthesia and animal well-being. Temperature was maintained at 36-37 C°.  

 

Data were also obtained from an awake behaving male Rhesus macaque monkey 

(macaca mulatta). Detailed methods regarding our procedures for training and recording 

from awake behaving macaques can be found in a previous publication (Smith et al., 

2007). All procedures were approved by the Institutional Animal Care and Use 

Committee of Carnegie Mellon University (awake recordings only) and the Albert 

Einstein College of Medicine at Yeshiva University (anesthetized recordings only) and 

were in compliance with the guidelines set forth in the United States Public Health 

Service Guide for the Care and Use of Laboratory Animals.  
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We implanted a 4×4 mm multielectrode array (0.4 mm spacing and 1 mm electrode 

length) with 100 electrodes into the upper layers of primary visual cortex (roughly 0.6-

0.8 mm deep in anesthetized animals; 1 mm for awake recordings), ~10 mm lateral to the 

midline and ~8 mm posterior to the lunate sulcus. Two reference wires were placed 

between the brain surface and the dura. Events larger than a user-defined threshold were 

recorded (Cyberkinetics Neurotechnology Systems). We applied additional voltage 

thresholding offline (Plexon OfflineSorter) to remove any remaining noise. Units from 

the same electrode were then combined to form multi-unit activity (MUA). The peak 

firing rate of this signal was on average 20.7±0.5 ips, suggesting it arose from a handful 

of neurons at most. LFPs were obtained by band-pass filtering the same signal between 

0.3 Hz and 250 Hz and sampling at 1 or 2 kHz.  

 

In some experiments, a separate linearly arranged multielectrode device (Thomas 

Recording) was positioned between the lunate sulcus and the array, with each electrode 

referenced to the guide tubes. Raw signals recorded from this device were band-pass 

filtered between 0.5 Hz and 250 Hz, and digitized at 1 kHz. To remove 60 Hz noise, we 

applied a fourth order Butterworth band-stop filter to the raw data.  

 

Visual stimulation 

Visual stimuli were generated using custom software (EXPO or Matlab Psychtoolbox) 

and displayed on a monitor with a resolution of 1024 by 768 pixels, viewed at a distance 

of 110 cm (58 cm for awake recordings). We mapped the spatial receptive field of each 

channel by presenting small, drifting gratings (0.6 degrees; 250 ms duration) at a range of 
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spatial positions. We centered our stimuli on the aggregate receptive field of the recorded 

units. Stimuli were viewed binocularly and presented for 1 second at full contrast. We 

presented each stimulus 25 times (100 times for measurements of dynamics), in a 

pseudorandom sequence. In awake recordings, the animal was required to maintain 

fixation within a 1 degree window during the 1 s stimulus presentation and to make a 

saccade to a random target location at stimulus offset.  

 

For our measurements of tuning at different sizes, stimuli were viewed monocularly. In 

these experiments, we included only those sites whose receptive field center was within 

0.5 degrees of the stimulus center. This yielded typically about half of the recorded sites, 

with a maximal separation of 3.57±0.02 mm on average. In our noise masking 

experiments, spatial noise was created by selecting small patches (0.06×0.06 degree) 

randomly in the original image, computing the mean luminance of each patch, and then 

randomly permutating the patches (Zhou et al., 2008). The noise level (20, 50 and 80%) 

was defined by the proportion of total area replaced by noise. Noise was randomly 

distributed on each frame.  

 

Data analysis 

We isolated the induced components of the LFP by subtracting the evoked signal (the 

average response across trials, for each stimulus) from the raw signal on each trial 

(Figure 2.1A). We then analyzed responses 100-1000 ms after stimulus onset, when the 

magnitude of the evoked component was minimal. We did this to separate these two 

different components of the LFP (Katzner et al., 2009), but the power spectra of the raw 
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LFPs (i.e. not subtracting the evoked component) were in fact similar to the induced 

LFPs, except at low frequencies (<20 Hz) (Figure 2.1B).  All of the findings reported 

here were thus similar when based on raw responses, even when we included the onset 

transient. 

 

We calculated the power spectrum with a multi-taper method (Mitra and Pesaran, 1999), 

which uses a set of orthogonal Slepian tapers to provide a good estimate of power for a 

limited number of trials and small time windows. For a signal of duration T and a desired 

half-bandwidth of W (determining the smoothness of the spectrum), the taper number is 

given by k = 2TW-1. For most of our analysis, the duration of the analyzed epoch was 0.9 

s, so we used 8 tapers to provide a half-bandwidth equal to 5 Hz. For the analysis of 

dynamics, we used a 129 ms sliding window (25 ms steps) and 3 tapers.  

 

Tuning of the LFP was based on its average power within 4 Hz bins, spanning the range 

from 0 to 160 Hz. Orientation preference was determined by the vector sum of responses 

to 16 test directions (22.5° step). An orientation selectivity index (OSI) was calculated as 

the vector sum of the response vectors (combining responses to different drift directions 

of the same orientation), normalized by the sum of lengths of the vectors (Leventhal et al., 

1995). For computing the OSI, we defined response strength with respect to that driven 

(MUA) or induced (LFP) by the least preferred orientation. Using spontaneous activity as 

a baseline was precluded because its power could be either greater or less than the 

stimulus-induced power, depending on the frequency band of interest.  
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Only sites with an OSI larger than 0.2 for both MUA and gamma were kept for tuning 

related analysis (i.e. for determining the orientation preference of the site or for the 

correlation between tuning curves). To determine the preference of individual sites, we 

used the best tuned frequency band (i.e. the 4 Hz band with highest selectivity;(Berens et 

al., 2008) in the gamma range (30-50Hz).  

We quantified the variance of orientation preferences in the population, σ2, as: 

, 

where θi is the orientation preference for channel i and n is the number of sites.  

To determine the tuning similarity between MUA and LFP from the same channel (rMUA-

LFP, or rMUA-γ when comparing only to the gamma components) or between two LFP sites 

(rLFP-LFP or r γ -γ), we calculated the Pearson correlation between their tuning. We found 

that the peak gamma frequency was lower for large gratings (Gieselmann et al., 2008) 

and higher for stimuli masked by noise (similar to the effect of lowering stimulus contrast; 

Ray and Maunsell, 2010). To enable a meaningful comparison across conditions, we 

therefore computed tuning correlations (and all other measures, except orientation 

preferences) based on the average gamma power in 30-50 Hz. We obtained similar results 

if our analysis was based on any sub-band in this frequency range.  

 

To measure the spatial coherence of the LFP, we calculated the coherency between 

signals measured at different sites (x and y) as: 
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where Sxy is the cross-spectrum calculated with the multitaper method (duration of 0.9 s, 

half-bandwidth of 5Hz, and taper number of 8), and Sxx and Syy are the respective auto-

spectra (Pesaran et al., 2002). Cxy is a complex number. Its modulus is the coherence 

(ranging from 0 to 1), a measure of the relationship between two signals as a function of 

frequency (f). The phase of Cxy is the relative phase difference between the two signals, as 

a function of frequency.   

 

All indications of variation in the graphs and text are standard errors of the mean (s.e.m).  

The statistical significance of all results was evaluated with two-tailed t-tests, unless 

otherwise noted.  Significance of correlation values was assessed after applying the 

Fisher Z-transform to the data.



49 
 

2.4 Results 

We implanted microelectrode arrays in the upper layers of V1 of 8 anesthetized macaque 

monkeys and recorded spiking activity and LFPs (0.3-250 Hz) simultaneously on each 

electrode. Each array covered roughly a 4×4 mm cortical region, corresponding to the 

representation of approximately 2-3 degrees of the lower visual field (2-5 degrees from 

the fovea).  

 

Orientation tuning of gamma power 

To compare the tuning of gamma power to local spiking activity, we measured responses 

to large gratings (7.4 or 10 degrees in diameter) drifting in 16 different directions. 

Gratings had a spatial frequency (1 cycle/deg) and drift rate (6.25 Hz) chosen to evoke 

robust activity in parafoveal V1 (Foster et al., 1985). Spiking activity was isolated from 

the filtered voltage signal (250 Hz-10 kHz) with a user-defined threshold, and sorted 

offline to yield multiunit activity (MUA). Tuning of the LFP was generated by computing 

the power spectrum of the induced signal on each trial and measuring how power in 

gamma and other frequency bands depended on stimulus orientation. Consistent with 

previous studies, we found that the LFP was stimulus selective. An example of its tuning 

at one site (for frequencies between 32 and 36 Hz) is shown in Figure 2.2A, together with 

that of the local MUA.  

 

We quantified tuning quality using a selectivity index, for which a value of 0 indicates an 

equal response to all orientations and a value of 1 indicates an elevated response to a 

single orientation, relative to all others. The low frequency components of the LFP were 
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poorly tuned, but for frequencies in the gamma range and higher (above roughly 30 Hz) 

selectivity was relatively high (black line in Figure 2.2B; n=680 sites in 8 implants), 

albeit lower than that of MUA (0.47±0.01; indicated with black dot to the right).  

 

To quantify the similarity of LFP orientation tuning to local MUA, we computed the 

correlation between their tuning at each site (termed rMUA-LFP). A value of rMUA-LFP near 1 

indicates very similar tuning; a value near -1 would indicate the opposite. For the tuning 

curves in Figure 2.2A, rMUA-LFP was 0.22. Consistent with previous V1 studies (Berens et 

al., 2008; Frien et al., 2000; Siegel and Konig, 2003), we found that high frequency 

components of the LFP were more similarly tuned to local spiking activity than low 

frequency components (Figure 2.2B, red trace). However, despite the tendency for rMUA-

LFP to increase for higher frequencies, we observed a clear deviation in the range of 30 to 

50 Hz (low gamma frequencies, hereafter ‘gamma’; indicated by box): tuning of gamma 

was relatively distinct from that of MUA. A similar effect was observed at harmonics of 

these frequencies (70-90 Hz) in some, but not all, implants. 

 

To explore this further, we compared the preferred orientation of gamma and MUA at 

each tuned site (selectivity index≥ 0.2). The two signals had a similar preference at some 

sites but not at others (Figure 2.2C for data from an example implant). Strikingly, this 

occurred because the orientation preference of gamma was often similar across sites. This 

is evident in the marginal histograms (Figure 2.2C) which show a roughly uniform 

distribution of preferences for spikes (circular variance, σ2, of 0.73) and a clearly biased 

distribution for gamma (σ2 of 0.23), with a preference of about 110 degrees being the 
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most common. We found a similar pattern in other implants: the distribution of 

preferences was consistently uniform for spikes (σ2 of 0.75±0.03, n=8) but strongly 

biased for gamma (0.23±0.06; p<<0.001 for the difference between the two signals; 

Wilcoxon Rank-Sum test). The orientation preferred by gamma, however, was different 

in each implant. 

 

We considered that our results might be due to anesthesia, so we recorded responses 

using the same type of microelectrode arrays and visual stimuli in an awake monkey (see 

Methods). The data are consistent with, but more striking than, those observed in 

anesthetized animals (Figure 2.2D). In this data set, the orientation preference of gamma 

was always near 60 degrees (σ2 of 0.07) whereas simultaneously recorded MUA showed 

a wide range of preferences (σ2 of 0.80).  

 

To evaluate the cortical distance over which orientation tuning is similar for gamma and 

other frequency components, we computed the correlation between its tuning (rLFP-LFP) at 

all selective sites and sorted the data according to the distance between electrodes (Figure 

2.3A; n=31,211 pairs of sites). The value of rLFP-LFP was well maintained across a distance 

of more than 4 mm for frequencies between approximately 35 and 90 Hz. In the 30-50 Hz 

band, it decayed only 10.2%, from 0.69±0.01 for nearby sites (0.4-0.8 mm; n=2,233) to 

0.62±0.01 at distances of 4-5 mm (n=571). At lower frequencies (<30 Hz), rLFP-LFP 

decayed more rapidly (35% over the same distance). At higher frequencies (>100 Hz), 

rLFP-LFP was significantly smaller, even for nearby electrodes, as each site had a different 

preference.  



52 
 

 

Because gamma tuning was similar across the entire spatial extent of the array, we 

performed simultaneous recordings with a separate multielectrode device (Thomas 

Recording) positioned roughly 3 mm away (5 penetrations in 4 monkeys).  These 

electrodes were arranged linearly and oriented orthogonally to the nearest edge of the 

array, providing neurons that were 3-9 mm from those sampled by the array. We used 

large gratings covering the receptive fields of all neurons to induce gamma activity. The 

tuning measured at these additional sites had a similar preference to those measured by 

the array (example shown in Figure 2.3B with each square representing the preference at 

one recording site and the respective distributions shown in Figure 2.3C), with a 

difference in mean preference of 4.5±1.0 degree. The orientation preference of gamma 

can thus be shared over many millimeters of cortex. Note that these recordings used 

independent multielectrode systems, with distinct electrical references (see Methods). As 

a result, these observations preclude the possibility that shared tuning involved an array-

specific artifact (e.g. cross-talk between electrodes) or arose from a common referencing 

of array electrodes (see also Berens et al., 2008 for related findings and further 

discussion).    

 

Our results show that when gamma is induced by large gratings, it is orientation selective 

but with a preference distinct from local spiking activity and similar across millimeters of 

cortex. Since its tuning is distinct, its power is thus not indicative of the strength of 

activity in local ensembles.     
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Dependence of gamma tuning on stimulus size 

The similar tuning of gamma we observed across sites was based on responses to large 

gratings. Previous studies have shown that gamma power is weakened by reducing 

stimulus size (Bauer et al., 1995; Gieselmann and Thiele, 2008). We therefore tested how 

this manipulation affects the similar tuning of gamma across sites and the relationship 

between its tuning and that of local spiking activity.  

 

To determine the influence of stimulus size, we measured orientation tuning with gratings 

ranging from 1 to 10 degrees in diameter. Stimuli were centered on the aggregate 

receptive field of the MUA, as determined by a separate mapping procedure (see 

Methods). We analyzed only those sites driven by our smallest stimulus so that the same 

locations would be compared across conditions. Consistent with previous observations 

(Bauer et al., 1995; Gieselmann and Thiele, 2008), gamma power increased with stimulus 

size (Figure 2.4A), nearly doubling over the range measured. In contrast, the spiking 

activity at these sites was suppressed by stimuli larger than 1 degree (Figure 2.4A), as 

expected given the prevalence of surround suppression in V1(Angelucci and Bressloff, 

2006).  

 

We found that the relationship between the orientation tuning of MUA and gamma 

depended strongly on stimulus size. When driven with small gratings (1 deg), gamma 

power had a similar preference to MUA at all sites, as shown in Figure 2.4B for a single 

implant. When stimulated with larger gratings (10 deg), the preference of gamma 

changed: it became more similarly tuned across sites, and its preference at many sites 
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became distinct from the local MUA (Figure 2.4C). Across our data set, we found rγ-γ, the 

tuning similarity of gamma, increased strongly with stimulus size (Figure 2.4D), from 

0.11±0.01 to 0.50±0.01 (n=2,961 pairs of sites in 3 implants). The similarity between the 

tuning of MUA and gamma (rMUA-γ), on the other hand, decreased from 0.42±0.03 to 

0.25±0.03 (n=129 sites), indicating these two signals became more distinct for large 

stimuli. Although the preference of gamma changed dramatically with stimulus size, its 

selectivity did not: the mean selectivity for small stimuli was 0.31±0.01 compared to 

0.37±0.01 for large gratings, a small but statistically significant increase in tuning quality 

for the more global signal (p=0.007). 

 

Our results show that gamma has a different preference for small stimuli (i.e. one 

matched to local spiking activity) and large ones (i.e. one shared across sites). This 

suggests that gamma does not reflect ensemble activity of a fixed extent. The shared 

preference we observed across millimeters of cortex, when gamma is induced by large 

stimuli, suggests a spatially-extensive mechanism underlying the signal. For small stimuli, 

the close match between the preference of spiking activity and gamma measured at the 

same site strongly suggests a local basis for the signal. Note that small gratings activated 

roughly 10 mm2 of cortex, but the preference of gamma matched the spiking activity at 

each measured location. Thus, the close match between the preferences of these two 

signals is not a trivial consequence of small gratings only driving circuits near a particular 

electrode. 

 

Two components of gamma power 
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The change in the tuning of gamma with stimulus size was paralleled by a change in the 

form of the LFP spectra. Small gratings induced a broadband (20-160 Hz) increase in 

power, which was stronger for some orientations than others (Figure 2.5A). The 

preference for gamma frequencies was similar to that of both higher (>50 Hz) and nearby 

lower (20-30 Hz) frequencies. Large gratings induced a notable increase in power at 

gamma frequencies, which strongly exceeded the power of both high and lower (20-30 

Hz) frequencies (Figure 2.5B; Gieselmann et al., 2008; Ray and Maunsell, 2010). The 

tuning of this gamma "bump" was often distinct from neighboring frequencies, 

suggesting a distinct origin.  

 

We estimated the strength of the broadband component of gamma using an exponential 

fit to the power measured between 20-26 and 80-160 Hz (outside the range of gamma; 

dashed lines in Figures 2.5A and 2.5B). For activity induced by small stimuli, this fit 

captured 92±2% of the variance in the spectra over the 20-160 Hz range. The gamma 

power estimated by this fit was 87±1% of that measured, and it was strongly correlated 

with the measured gamma across orientations (r=0.64±0.02). The remaining power—that 

exceeding this prediction—we refer to as the gamma bump. The broadband component of 

gamma decreased for larger stimuli (Figure 2.5C), much like spiking activity (Figure 

2.4A); the gamma bump, on the other hand, grew with stimulus size (Figure 2.5C). The 

proportion of total gamma power attributable to the bump thus increased with stimulus 

size (Figure 2.5D).  

 

To compare the tuning of these two components of gamma and their relationship to local 
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spiking activity, we calculated rMUA-γ and rγ-γ separately for each component (Figure 2.5E 

and F). We found that the gamma bump for large stimuli (for which it was most 

accurately measured) had a similar preference across sites (rγ-γ of 0.56±0.007) and thus a 

distinct preference from local spiking activity (rMUA-γ of -0.01±0.04). The broadband 

component of gamma, on the other hand, was always similarly tuned to local spiking 

activity (rMUA-γ ranging 0.50 to 0.62) and thus tuning across sites was only weakly 

correlated (rγ-γ ranging from 0.18 to 0.24).    

 

We conclude that there is a component of gamma that arises from broadband changes in 

power. This component behaves similarly to local spiking activity. Large stimuli induce a 

second component, which has a shared preference across millimeters of cortex. The 

flexible relationship between the tuning of gamma and local spiking activity, revealed by 

changes in stimulus size, can be explained by the relative contribution of these two 

components to total gamma power.    

 

Manipulations that do not alter stimulus size can also change the preference of gamma 

Manipulating stimulus size shows that the preference of gamma and its relationship to 

local spiking activity are flexible, but leaves unclear when gamma is likely to display a 

shared preference across sites. It could be that shared tuning involves mechanisms that 

are recruited whenever an extensive region of cortex is visually driven, as with large 

gratings. Alternatively, shared tuning may occur because of the gamma bump induced by 

such stimuli. If so, manipulations that reduce the power of this component—without 

altering the extent of visually-driven cortex—would be expected to result in tuning 
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similar to that of local multiunit activity.  

 

To distinguish between these possibilities, we manipulated gamma power by masking 

large gratings with noise (Zhou et al., 2008). This manipulation had a limited effect on 

V1 firing rate, with the response evoked by unmasked gratings and those masked with 80% 

noise being nearly indistinguishable in strength (dashed trace, Figure 2.6A): the mean 

firing rate across stimuli was 8.9±0.7 spikes/s for unperturbed grating compared to 

8.4±0.7 for those masked with 80% noise (n=248 sites in 3 implants). With high levels of 

noise, however, gamma power was reduced more than two-fold (Figure 2.6A; from a 

normalized value of 0.99±3E-4 to 0.42±5E-3; n=248 sites; see (Lima et al., 2010) for 

related findings). This was due primarily to a loss of the gamma bump, as evident in the 

small proportion of the total power provided by this component with high masking noise 

(Figure 2.6B). 

 

The relationship between the tuning of gamma and local spiking activity depended on the 

strength of masking noise. Figure 2.6C shows the orientation preference for one array at 

three noise levels. For unmasked gratings (0% noise; top panel), the preference of gamma 

was similar across sites (σ2 of 0.12 and rγ -γ of 0.67) and distinct from local multiunit 

activity (rMUA-γ of 0.15). With high masking noise (80% noise; lower panel), the tuning of 

the two signals became more similar (rMUA-γ of 0.56) and, thus, the preference of gamma 

was no longer shared across sites (σ2 of 0.59 and rγ-γ of 0.33). Across implants, as 

masking noise was increased, rγ-γ decreased from 0.74±3E-3 to 0.48±2E-3; p<<0.001; 

n=8,911 pairs of sites) and gamma became more similarly tuned to the local MUA (rMUA-γ 
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increased from 0.14±0.02 to 0.46±0.02; p<<0.001; n=228 sites).  

 

These results show that noise masking disrupts the gamma bump induced by large stimuli 

and results in gamma whose tuning is similar to local spiking activity. Compared to 

manipulations of stimulus size, masking required a larger decrease in gamma power to 

generate a signal with similar preference to local spiking activity: it is only at the highest 

level of masking noise, when the gamma bump is nearly entirely suppressed (Figure 

2.6B), that the two signals become more similarly tuned. Thus, while the trends for size 

and noise masking manipulations are similar, the point at which gamma switches from a 

shared preference to a local one is different. This is presumably because of numerous 

differences in the drive provided by these two stimuli. Nevertheless, our masking results 

clearly show that the change in the tuning of gamma does not require reducing stimulus 

size or the spatial extent of activated cortex.   

 

To test further the flexible relationship between the tuning of gamma and local spiking 

activity, we made use of the slow build-up of induced gamma after stimulus onset (Bauer 

et al., 1995; Ray and Maunsell, 2010). We analyzed responses to large gratings drifting in 

different directions, with interleaved blank stimuli, using a sliding window (129 ms 

epoch length with 25 ms steps). Gamma power increased soon after stimulus onset 

(Figure 2.7A, vertical dashed line) but reached its maximum roughly 250 ms later, on 

average (n=683 sites). The proportion of power attributable to the gamma bump reached 

its maximum at a similar time, but its onset was delayed, revealing that the initial 

enhancement of gamma reflects a broadband increase in power (Figure 2.7B).  
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During the initial epoch of the response (25-154 ms after stimulus onset; Figure 2.7C, 

top), gamma tuning was well matched to the local spiking activity (rMUA-γ of 0.47) and 

had a wide range of preferences (σ2 of 0.87). In later epochs, gamma tuning changed to a 

common preference across sites (σ2 of 0.25 for the epoch from 350-479ms). Across 

implants, we found that rγ-γ increased markedly over the first few hundred milliseconds of 

response (from 0.47±2E-3 to 0.71±2E-3; p<<0.001; Figure 2.7D, gray line). Over the 

same period, rMUA-γ fell more than two-fold (from 0.35±0.01 to 0.14±0.02; p<<0.001; 

Figure 2.7D, black line). The relationship between the tuning of gamma and local MUA 

is thus dynamic, and these dynamics mirror the relative contribution of the gamma bump 

to its total power.  

 

In conclusion, there are two components to stimulus-induced increases in gamma power, 

and the relative weight of these determines the relationship between gamma tuning and 

that of local spiking activity. Stimuli that induce strong gamma bumps (large, 

unperturbed gratings) result in similar tuning across sites and a preference that is distinct 

from that of local MUA. Small gratings, or those masked with noise, induce gamma that 

arises from a broadband increase in power, resulting in a signal with similar tuning to the 

local spiking response. Similarly, the dynamic relationship between the tuning of gamma 

and local spiking activity reveals that as the contribution of the gamma bump to total 

gamma power increases, the preference of gamma switches from that of the local MUA 

to a common orientation across sites.  
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Spatial coherence of the gamma rhythm 

When gamma power is high and the spectral bump prominent, tuning is similar across 

sites. This suggests that under these conditions the preference of locally measured signals 

arises from a shared rhythm. To test this directly, we measured the spatial coherence and 

phase difference of gamma across sites, for different stimulus conditions. A shared 

gamma rhythm would be indicated by higher coherence and smaller phase offsets.   

 

We computed the coherence between signals induced by both large and small stimuli 

(n=2,961 pairs; averaging across different stimulus orientations), using the same set of 

driven sites. Small gratings (1 degree) induced a small increase in gamma coherence, 

relative to spontaneous conditions, with a limited spatial extent of roughly 2 mm (Figure 

2.8A, left column, and 2.8B). Large gratings induced a more substantial increase in 

coherence and signals were also more phase aligned (Figure 2.8A; right column). This 

enhanced coherence extended across all measured distances (Figure 2.8B), and decayed 

more slowly for large gratings than small ones (exponential decay with a space constant 

of 1.6 mm, compared to 1.0 mm for small gratings). The enhanced coherence for activity 

induced by large gratings was strongest for the shared, preferred orientation (data not 

shown).  

 

We also compared coherence for large, unperturbed gratings with those masked with 

noise. Gamma coherence was weaker and more localized for signals induced by masked 

gratings (Figures 2.8C, left column, and 2.8D; n=9,891 pairs). For 80% masking noise, 

coherence was nearly indistinguishable from that measured under spontaneous conditions 
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(without stimulus drive), although gamma and spiking responses were selective for such 

stimuli (as evidenced by the enhanced value of rMUA-γ in Figure 2.6).  

 

Our coherence analysis suggests that large gratings induce a single, global gamma 

rhythm with little phase lag across sites. If so, gamma activity should be maintained after 

averaging the signals recorded at different sites on each trial—a signal we term the global 

LFP. Figure 2.9A shows single-trial examples of the global LFP induced by large (10 deg; 

top) and small (1 deg; bottom) gratings of the same orientation, averaged across the same 

sites. The large stimulus induced a prominent gamma rhythm; this was absent from the 

signal induced by the small stimulus. This result was not due to an undue influence of the 

signal recorded at a few electrodes, as Z-scoring the LFP before averaging yielded 

essentially identical results. We quantified the power in the global LFP for all frequencies 

and stimulus sizes we presented (n=3 implants; Figure 2.9B). For small gratings, gamma 

components of the global LFP had minimal power. For larger stimuli, however, power in 

the gamma band increased nearly six fold over the range measured. Other frequency 

bands did not show this behavior. The global LFP showed strong orientation selectivity 

for gamma power induced by large but not small stimuli (Figure 2.9C). Across implants 

(n=3), the selectivity of the gamma component of the global LFP was 0.32±0.08, 

comparable to the selectivity at each individual site (0.37±0.01), and its preferred 

orientation closely matched the mean preference of signals measured at individual sites 

(mean offset of 1.7±0.7 degrees; n=8 implants).  

 

Together these results show that the gamma measured at each electrode reflects a 
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spatially extensive rhythm, when activity is induced by large but not small gratings. The 

power in this signal is stronger for some orientations than others, giving rise to a common 

preference across sites. A potential explanation for the extensive coherence of gamma 

induced by large stimuli is that it reflects volume conduction, which could in principle 

explain its similar tuning across sites as well (i.e. if the signal measured by each electrode 

reflects a spatial average of distantly-generated gamma signals). Several pieces of 

evidence argue against this. First, recent estimates of volume conduction suggest it is 

limited to 250 microns (Logothetis et al., 2007; Xing et al., 2009), roughly 20-fold 

smaller than the extent of spatially coherent gamma that we observe. Consistent with this, 

annular gratings induce no gamma power at sites where spiking activity is not elevated 

(Gieselmann and Thiele, 2008; Jia and Kohn, personal observations), showing that 

gamma from distant sites does not passively propagate over large distances. Second, 

because high-amplitude signals should conduct more effectively (i.e. remain measurable 

despite the attenuation associated with passive propagation through the extracellular 

space), one would expect low frequencies to be more coherent than gamma frequencies, 

as their power is substantially higher (Figure 2.1B). However, when induced by large 

gratings, gamma was slightly more coherent than low frequencies (Figure 2.8A; mean of 

0.599±0.002 for gamma vs. 0.583±0.002 for frequencies <10 Hz), although gamma 

power was 26-fold lower. Note also that the change in the preference and coherence of 

gamma with stimulus conditions involved roughly two fold changes in power (Figures 

2.4A and 2.6A). It seems unlikely that this would result in a signal whose tuning was 

different at sites separated by 400 microns, in one case, but shared up to 9 mm in another. 

Third, when a strong gamma rhythm is induced, spike-spike coherence in gamma 
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frequencies is elevated across the array (Jia et al., 2011). Since volume-conducted fields 

have little influence on membrane potential—compared to those locally generated—the 

enhanced coordination of neuronal activity argues strongly against an important 

contribution of volume conduction (Bauer et al., 2007). Fourth, if the gamma rhythm 

induced by large gratings involved simple volume conduction of distant signals, one 

would expect little or no selectivity, because each site would represent the average of 

locally-generated signals with different preferences. In fact, tuning was more selective for 

gamma induced by large gratings than small ones (as described above).  

 

A neural representation bias underlies the preference of the global gamma rhythm 

We have shown that large stimuli induce a spatially extensive gamma rhythm that is both 

well-tuned and has a common preference across millimeters of cortex. We wondered why 

some orientations would induce a stronger rhythm than others, over such a large region. 

One possibility is that this preferred orientation reflects or magnifies a small bias in the 

neuronal representation of orientation. An obvious source for this bias would be the 

purported systematic overrepresentation of cardinal orientations in primary visual cortex 

(Li et al., 2003).  However, we observed a shared preference for non-cardinal orientations 

in a number of implants, such as those in Figures 2.2C and D.  Alternatively, the shared 

preference could arise from an inhomogeneous representation within a more limited 

region, such as the bias seen in fMRI voxels which are orientation-tuned despite 

reflecting activity averaged over several (or even many) cubic millimeters (Haynes and 

Rees, 2006; Kamitani and Tong, 2005).   
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We attempted to detect this potential representational bias with our neuronal recordings, 

by comparing the preference of the gamma induced by large gratings to the most 

common preference of the spiking activity detected by our array. Figure 2.10A shows the 

range of MUA preferences from one array (σ2=0.88; n=89 sites, arranged according to 

their position on the array), measured with large gratings. Figure 2.10B shows the 

orientation preference of gamma from the same array, with its characteristic narrow 

distribution of preferences (σ2=0.26). In this implant, there is no obvious relationship 

between the preference distribution of gamma and that of the recorded spiking responses: 

the preferred orientation of gamma is near 0 degrees, but there is no bias for this 

orientation in the spiking responses. We quantified this relationship by computing the 

correlation between the population-averaged tuning of MUA and gamma, after 

normalizing the data for each site by the maximal response. For the example implant, this 

correlation was 0.28 (Figure 2.10C). Across implants the mean correlation was 0.27±0.24 

(n=8), not significantly different from zero (p=0.72). We were thus unable to detect a bias 

in the spiking representation of orientation that could underlie the shared preference of 

gamma. However, this failure is perhaps not surprising given the limited sample of 

recording sites provided by the array.   

 

Because we could not observe a relationship between the preferences of the sampled 

spiking activity and the shared orientation preference of gamma, we took advantage of 

the biased preference of V1 neurons in spatial and temporal frequency. We tested our 

explanation for the shared preference of gamma in an additional, independent manner: by 

measuring tuning for grating spatial and temporal frequency. Whereas the representation 
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of orientation would be expected to be at most weakly biased, neuronal preferences for 

spatial and temporal frequency are well known to be non-uniformly distributed (Foster et 

al., 1985; Hawken et al., 1996; O'Keefe et al., 1998). We reasoned that if a biased 

representation underlies the preference of gamma, its tuning for spatial and temporal 

frequency should be similar both across sites and implants.   

 

We measured tuning using large gratings drifting at a fixed drift rate (6.25 cycles/s) and 

with spatial frequencies ranging from 0.1-8.6 cpd, or with a fixed spatial frequency (1 

cpd) and a range of drift rates (0.3-25 cycles/s). Sites for which the minimal response was 

not at least 50% smaller than the peak response were deemed untuned (Foster et al., 1985; 

6.3% of 567 MUA sites for spatial frequency and 9.6% of 732 MUA sites for temporal 

frequency). At selective sites, MUA often had high pass or low pass tuning (Figure 2.11C, 

D; 7.9% and 9.1%, respectively, for spatial frequency; and 10.3% and 36.0% for 

temporal frequency), defined as a response at the lowest or highest measured frequency 

that was larger than 75% of the peak response (Levitt et al., 1994; Movshon et al., 2005). 

At the remaining bandpass sites, we estimated the preference based on the fit of a 

difference-of-Gaussians function to the data.  MUA had a wide range of spatial and 

temporal frequency preferences (Figures 2.11C, D).  

 

Unlike the tuning of MUA, gamma power had bandpass tuning for both stimulus 

parameters at almost all sites (Figure 2.11A and B; 99.8% of sites for spatial frequency 

tuning and 97.8% for temporal frequency). There were no untuned gamma sites. 

Remarkably, gamma preferences for spatial and temporal frequency were similar across 
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sites and implants (Figure 2.11C and D).  For instance, across 567 sites recorded in 7 

implants, 86% of sites preferred a spatial frequency between 1 and 3 cpd; for MUA, these 

preferences were most common but they accounted for only 29% of sites. The similarity 

of spatial and temporal frequency tuning of gamma, across sites and implants, is 

consistent with its preference arising from the biased representation for these stimulus 

features.    
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2.5 Discussion 

To determine the spatial extent of gamma and its relationship to spiking activity, we 

recorded LFPs and MUA simultaneously in the upper layers of macaque V1. We found 

that gamma could have similar tuning to local spiking activity, when it reflected a 

broadband increase in power. Under other conditions, gamma could form a coherent, 

spatially extensive rhythm with similar tuning across millimeters of cortex. This latter 

behavior was evident for stimuli that induced a distinct spectral bump, a signal that grew 

slowly after stimulus onset and that could be disrupted by reducing stimulus size, or 

using masking noise. Our results suggest two distinct components to gamma power, with 

very different relationships to neuronal activity. The relative weight of these two 

components is stimulus dependent, resulting in a flexible relationship between the tuning 

of gamma power and local spiking activity.  

 

This flexible relationship offers an explanation for previous disparate findings. Some 

previous comparisons of the tuning of gamma and local MUA have found matched 

preferences, but others have not. This has lead to estimates that gamma reflects activity 

within 250 microns up to 3 mm of the electrode (Berens et al., 2008; Gray and Singer, 

1989; Liu and Newsome, 2006); (Kreiman et al., 2006). Our findings show stimulus 

conditions under which each of these descriptions is accurate. Similarly, studies of the 

relationship between gamma and the BOLD fMRI signal have found both strong 

correlation ((Goense and Logothetis, 2008; Kayser et al., 2004) and a weak one (Maier et 

al., 2008, who used briefly flashed noise stimuli). These differences could be explained 

by the two components of gamma we observe, assuming the global gamma rhythm is 
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more directly related to the macroscopic measurement afforded by BOLD. More 

generally, our results emphasize that one must carefully consider stimulus properties—

and the relative weight of broadband increases in power to the spectral bump—in 

understanding and interpreting the behavior of gamma. 

 

When induced by large gratings, gamma is coherent over millimeters of cortex, consistent 

with previous studies (Frien and Eckhorn, 2000; Juergens et al., 1999; Leopold et al., 

2003). Despite this spatial extent, it remains remarkably well tuned. Our observations 

thus reconcile previous work emphasizing the extent of gamma coherence with 

seemingly inconsistent claims that gamma is well tuned. Importantly, our results show 

that inferring the spatial extent of gamma rhythms from their selectivity is problematic: a 

well-tuned signal does not mean a local one. Only by measuring tuning and coherence 

across sites—a novel feature of our study—can one accurately determine the extent and 

functional specificity of gamma rhythms. 

 

Our findings do not contradict recent reports that the evoked LFP reflects neural activity 

within 250 microns of recording site (Katzner et al., 2009) and that the passive 

propagation of extracellular fields has a similarly limited spatial extent (Xing et al., 2009). 

We focused on an induced signal whose extent is influenced by passive propagation but 

ultimately determined by the circuits generating it. Katzner et al. (2009) did compare the 

orientation tuning of the induced and evoked LFP and concluded they were similar. 

However, activity was driven by brief stimuli (32 ms) which do not induce a strong 

gamma rhythm (Figure 2.7; see also (Kruse and Eckhorn, 1996)). To be sure that our 
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different conclusions concerning induced gamma were not due to other factors, we 

recorded responses to similarly brief (40 ms) presentations and confirmed that the 

induced gamma power is weak, contains little evidence of a bump, and that both this 

signal and the evoked response are similarly tuned to local MUA (data not shown), 

entirely consistent with Katzner et al. (2009). 

 

A previous study by Berens et al., 2008, conducted in awake macaque V1 using large 

gratings, reported findings similar to a subset of ours. Namely, they found that the 

orientation preference of gamma was similar across nearby sites (separated by 1 mm or 

less) and inferred that gamma reflects activity within 500-1000 microns of the electrode 

tip, due to a combination of extensive circuits generating the rhythm and the volume 

conduction of those signals. Our interpretation differs from theirs in part because we 

show that gamma power consists of two components. Shared tuning across sites is not a 

fixed property of gamma; it occurs only when a prominent bump is induced. Further, our 

data suggest that when tuning is similar across sites, this is not due to simple volume 

conduction of nearby signals (for reasons described in Results), but rather because of the 

formation of a spatially extensive, coherent rhythm. Our different interpretation arises 

because we considered a wider range of stimulus manipulations (size, noise masking, 

dynamics, and spatial and temporal frequency), sampled across a roughly 10-fold higher 

range of distances, and because we analyzed both coherence and tuning across sites.  

 

Berens et al. (2008) also reported that the selectivity of gamma is positively correlated 

with its similarity to local spiking activity. They propose that this relationship reflects the 
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spatially extensive ensemble contributing to gamma and whether the recording site is 

situated in an iso-orientation domain (similar preference to MUA and high selectivity) or 

at a pinwheel center. We observe a similar relationship between selectivity and the match 

to local MUA (Jia and Kohn, unpublished observations), even when gamma was induced 

by large gratings and extends over many pinwheels. In this case, the correlation may arise 

because when gamma preference is matched to local spiking activity, the gamma bump 

and its broadband component will have a similar preference; at sites where gamma is 

different from local spiking activity, these two components will have different 

preferences, resulting in weaker selectivity. 

 

Mechanisms 

The mechanisms of gamma generation have been studied extensively, both in the 

hippocampus and neocortex. GABAergic interneurons have been shown to play a critical 

role in generating gamma (Atallah and Scanziani, 2009; Bartos et al., 2007; Cardin et al., 

2009; Hasenstaub et al., 2005; Traub et al., 1996a; Whittington et al., 2010; Whittington 

et al., 1995), and this is perhaps enhanced by interactions with excitatory neurons 

(Buzsaki, 2006; Tiesinga and Sejnowski, 2009). In cortex, 'chattering cells' may also 

contribute (Cunningham et al., 2004b; Gray and McCormick, 1996).  

 

These mechanisms do not appear to contribute strongly to the gamma induced by small 

stimuli and large, masked gratings, or at response onset. This is because gamma in these 

cases reflects a broadband increase in power, rather than a mechanism specific to gamma 

frequencies (see also Ray and Maunsell, 2010). Instead, the broadband increase in power 
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likely arises from a general elevation of synaptic and spiking activity in local circuits 

because this signal behaves similarly to local MUA (e.g. similar orientation tuning and 

suppression by large gratings). This component of gamma may also include direct 

spectral contamination of the LFP by spiking activity, although previous work suggests 

this is limited to frequency components above 50 Hz (David et al., 2010; Zanos et al., 

2011).   

 

The traditional inhibitory (or excitatory-inhibitory) mechanisms of gamma generation 

presumably do underlie the spectral bump we observe for activity induced by large 

stimuli. However, the global nature of this rhythm suggests additional spatially extensive 

mechanisms that coordinate or drive this inhibitory network. One possibility is that this 

involves feedback connections, which extend over long distances and are thought to 

contribute to the surround suppression recruited by large stimuli (Angelucci and Bressloff, 

2006; Bair et al., 2003). Alternatively, the global gamma rhythm may be an emergent 

rhythm that involves the coordination of local generators through mechanisms such as 

long-range lateral connections or gap-junction coupling among inhibitory neurons 

(Buzsaki, 2006; Tiesinga and Sejnowski, 2009). Finally, the global gamma rhythm may 

arise from an altered balance between excitatory and inhibitory activity in cortex, because 

inhibitory cells may be only weakly surround suppressed (Brunel and Wang, 2003; 

Haider et al., 2010).  

 

Whichever mechanisms contribute, they must be more effective for some stimuli than 

others, a property we suggest may be due to biased representations for these features (e.g. 
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stronger feedback or an enhanced local representation). An intriguing possibility is that 

this bias involves a recently described over-representation of orientations corresponding 

to the radial position of the spatial receptive fields (a radial bias; Freeman et al., 2011). 

The sites we recorded represented similar positions in the visual field across animals, so 

one might expect to observe similar preferences. However, the gratings we used were 

positioned slightly differently in each animal, and given the proximity of our recordings 

to the fovea. These small differences could alter the net bias in the recruited population. 

These explanations for our findings are, of course, speculative and additional work is 

needed to address the mechanisms underlying the novel properties of gamma we report. 

 

Functional role of gamma rhythms 

Through its suggested influence on spike timing, gamma has been proposed to provide a 

temporal window for communication (Fries, 2009), encode the amplitude of stimulus 

drive in response phase (Fries et al., 2007), bind distributed representations (Gray, 1999), 

or dynamically route information (Colgin et al., 2009; Fries, 2009; Pesaran et al., 2002). 

The spatially extensive, coherent gamma rhythm we observe seems better suited for an 

integrative function than one that requires targeting specific subsets of neurons. For 

instance, the gamma induced by a large vertical grating is similar at sites where neurons 

prefer vertical or horizontal structure. Thus, it could not be expected to emphasize or 

group specific subset of neurons. Only when gamma power is limited (reflecting a 

broadband increase in power), is it spatially and functionally selective. However, 

precisely because it is weak, it is unlikely to have a strong influence on spike timing 

under these conditions (Okun et al., 2010; Sohal et al., 2009).     
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As an integrative signal, the global gamma rhythm could, in principle, function as an 

internal reference. For instance, it seems well suited to modulate spike timing in a large 

region of cortex. However, this rhythm is much stronger for some stimuli than others, in a 

patch of cortex representing several degrees of visual field. Unless perceptual 

performance is similarly biased, this would suggest a limited functional role, at least for 

stimulus-induced gamma activity in V1. Under this interpretation, the global gamma 

rhythm may simply be a resonant frequency arising from the interaction between 

excitation and inhibition (Burns et al., 2010b; Ray and Maunsell, 2010), albeit one that 

can reflect a much more extensive ensemble than previously considered.  
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2.6 Figure legends 

 

Figure 2.1 Evoked and induced components of the LFP. (A) Single epoch examples of 

the raw LFP (top) and the induced component (bottom).  The induced component is 

calculated by subtracting the evoked component (middle) from the raw signal. (B) 

Example of the power spectrum of the induced LFP (red), compared to the raw LFP 

(black). Spontaneous activity was measured with a uniform luminance screen (gray 

dashed).  
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Figure 2.2 Comparison of the orientation tuning of the LFP with local spiking activity. 

(A) Example tuning curves for MUA (black) and gamma power (gray) at the same site 

(n=25 repeats). (B) Population average trends for LFP orientation selectivity (black) and 

correlation between the tuning of MUA and the LFP (rMUA-LFP; red), as a function of 

frequency (n=680 sites). The mean orientation selectivity index for MUA is indicated to 

the right side (black dot). (C) Comparison of orientation preferences for gamma and 

MUA (n=71 sites from one implant). The circular variance (σ²) of the distributions was 

0.23 for gamma and 0.73 for MUA. (D) Similar example for data from an awake monkey 

(n=79 sites).  
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Figure 2.3 Relationship between orientation tunings of the LFPs measured at different 

sites. (A) Population average of rLFP-LFP as a function of distance, for sites with 

orientation selectivity ≥ 0.2. Cross-sections of the color plot for distances of 0.4-0.8 mm 

(n=2,233 pairs) and 3.6-4.0 mm (n=1,347 pairs) are shown on the right. (B) An example 

of orientation preference in the gamma band, from simultaneously recording using two 

multielectrode systems. Each square represents the orientation preference of one 

recording site, plotted according to its position of the recording sites. (C) Distributions of 

orientation preference for the example in (B).  
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Figure 2.4 Effect of stimulus size on gamma power and its tuning. (A) Normalized firing 

rate (dashed trace) and gamma power (solid black trace) as a function of stimulus size.  

Data are shown only for sites driven by the smallest stimulus (n=129 sites; n=2,961 pairs). 

(B) Comparison of orientation preference for activity driven by a 1 deg grating (n=57 

sites), for a single implant. The preference of gamma was similar to the MUA at all sites, 

and the distribution of preferences had a similar variance (0.85 and 0.74, respectively). 

(C) Orientation preferences for the same sites as (B) but when stimulated with a large 

grating (10 deg). Gamma preferences dissociated from MUA and became more uniformly 

tuned, with circular variance equal to 0.32. (D) Dependence of rMUA-γ (solid trace; n=129 

sites) and rγ-γ (dashed trace; n=2,961 pairs) on stimulus size.  
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Figure 2.5 Two components of gamma power and their dependence on stimulus size. (A, 

B) Power spectra of LFPs from one recording site, for large (10 deg; A) and small (1 deg; 

B) stimuli for two orientations (red and black lines) and spontaneous activity (gray lines). 

Estimate of broadband component of gamma power is provided by the exponential fit 

indicated with dashed lines. (C) Normalized power of the gamma bump and broadband 

component, as a function of stimulus size (n=129 sites). (D) Proportion of total power 

attributable to the gamma bump. (E, F) Dependence of rMUA-γ (solid trace; n=129 sites) 

and rγ-γ (dashed trace; n=2,961 pairs), for the gamma bump (E) and broadband component 

(F), on stimulus size.  
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Figure 2.6 Masking noise modulates gamma power and its tuning. (A) Effect of masking 

noise on normalized gamma power (solid black trace; n=248 sites) and firing rate (dashed 

trace). (B) Proportion of total power attributable to the gamma bump. (C) Comparison of 

orientation preference of gamma and MUA for 3 noise levels (n=76 sites in one array). 

Gamma is more dissociated from local spiking activity when the gamma bump is more 

prominent. (D) Dependence of rMUA-γ (solid trace; n=228 sites) and rγ-γ (dashed trace; 

n=8,911 pairs; error bars are smaller than the line thickness) on the amount of masking 

noise. Stimuli size is 10 degrees. Representation of stimuli is shown at the bottom.   
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Figure 2.7 Dynamics of gamma power and its tuning. (A) Population average of 

normalized gamma power, as a function of time relative to stimulus onset (n=683 sites; 

error bars are smaller than the line thickness). Power peaks around 250 ms after stimulus 

onset. Each point represents the center of one epoch (129 ms window). Dashed vertical 

line, to facilitate comparisons across plots, indicates time bin centered at 14.5 ms. (B) 

Dynamics of the proportion of total power attributable to the gamma bump. (C) 

Orientation preference of gamma and MUA for epochs 25-254ms, 225-354ms and 350-

479ms after stimulus onset (n=86 sites). (D) Dynamics of rMUA-γ (black; n=683 sites) and 

rγ-γ (gray trace; n=29,870 pairs; error bars are smaller than the line thickness).  Negative 

values indicate time before stimulus onset.  
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Figure 2.8 Dependence of gamma coherence and phase alignment on distance. (A) 

Coherence (upper panels) and absolute phase difference (lower panels) of the LFP, as a 

function of the distance between recording sites (n=2,961 pairs). Results are shown for 

signals induced by small gratings (1 degree; left) and large gratings (10 degrees, averaged 

across stimulus orientations; right). Gamma coherence is weak and has a limited spatial 

extent when stimuli are small; gamma coherence increases markedly in both magnitude 

and spatial extent when stimuli are large, especially for the preferred orientation, and 

gamma activity shows a smaller phase difference across sites. (B) Coherence of gamma 

(averaged across orientations) induced by 1, 4 and 10 degree gratings as a function of 

distance between recording sites, as compared to that observed in the absence of visual 

stimulation (spontaneous; dashed line). Error bars, where not visible, are within the line 

thickness. (C) Coherence (upper panel) and absolute phase difference (lower panel) of 

LFPs induced by 80% noise masked large grating (n=9,891 pairs; left) and unperturbed 

large gratings (right). (D) Coherence of gamma induced by 50% and 80% noise masked 

and unperturbed gratings as a function of distance, compared to that observed for 

spontaneous activity.  
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Figure 2.9 The global LFP. (A) Single trial examples of the global LFP averaged across 

31 sites of one implant, for activity induced by a large (upper) and small (lower) stimulus 

of the same orientation. Insets show the power spectrum of the signal. (B) Average of the 

global LFP power spectra for different sizes (n=3 implants). Value indicated is the 

average across orientations. (C) Orientation tuning of the gamma component of the 

global LFP, for 10 degree (upper) and 1 degree (lower) stimuli of an array implant.   
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Figure 2.10 Relationship between neuronal preferences sampled by the array and the 

preference of gamma. (A) MUA orientation preferences plotted according to electrode 

positions on the array (left) and corresponding distribution (right). (B) Gamma 

preferences from the same array as (A) and their distribution (n=86 sites). (C) Population 

tuning curve of MUA (dashed) and gamma (solid) calculated by averaging normalized 

tuning curves of all sites from the same array. The two tuning curves are only weakly 

related, with a correlation of 0.28.  

  



93 



94 
 

Figure 2.11 MUA and gamma tuning for stimulus spatial and temporal frequency. (A) 

An example of gamma tuning for spatial frequency for a single site. (B) Same as (A) for 

temporal frequency tuning. (C) Distribution of spatial frequency preferences across all 

implants (567 sites from 7 implants), for tuned sites of MUA (top) and gamma (bottom). 

(D) Same as (C) for temporal frequency preferences (732 sites from 9 implants).  
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2.7 Appendix I – Peak frequency shifts in the gamma band 

X.Jia designed and performed the experiments, analyzed data in this section. 

 

2.7.1 Introduction 

In Chapter 2, we have shown that when stimulus size increases, gamma power (especially 

power in the spectrum peak) increases monotonically. The signal that contributes to the 

spectral bump in the gamma frequency has the potential to form a spatially extensive 

global rhythm which is selective for stimulus orientation. This is accompanied by a peak 

frequency shift in the gamma range (30-50 Hz).  

 

Previous studies have shown that with enlarging stimulus size the peak frequency in the 

gamma range of the power spectrum shifts lower while gamma power increases 

monotonically (Gieselmann and Thiele, 2008; Kang et al., 2009). Lowering stimulus 

contrast also makes the peak frequency in the gamma range shift lower (Ray and Maunsell, 

2010), as well as causing a decrease in gamma power (Henrie and Shapley, 2005). Here, 

we would like to test whether there is a link between the changing gamma power and peak 

frequency with size and contrast manipulations that have been used previously and the 

noise masking stimulus, which we have shown decreasing gamma power with increasing 

noise level. 

 

2.7.2 Materials and methods 

Same as method section in Chapter 2. 
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2.7.3 Results 

We found a decrease of peak frequency when gamma became more spatially extensive 

with enlarging gratings (Figure 2.12A). It has been proposed that the generation of 

gamma rhythm could include involve recurrent connection between excitation and 

inhibition and also feedback from higher cortical regions (Kang et al., 2009). This model 

predicts that as more feedback is recruited by enlarging a stimulus, the resonance 

frequency in gamma range will shift lower. Alternatively, with our finding of the spatial 

extent change in gamma rhythm, the peak frequency could reflect the average conduction 

delay time in the network generating gamma, with a larger network recruiting more long-

range connections to generate a global rhythm.  

 

Because the global rhythm can also be disrupted by adding masking-noise to the large 

gratings, I next checked the peak frequency change in the gamma band with different 

noise masking conditions. Noise masking affected peak frequency in a different way 

compared to stimulus size: as gamma power decreased, the peak frequency shifted to 

lower frequencies (Figure 2.12B), similar to the effect of lowering stimulus contrast 

(Figure 2.12C) (Ray and Maunsell, 2010).  

 

These results suggest that the neural network that gives rise to the gamma rhythm 

changes similarly with noise-masking and lowing contrast. The opposite trend of gamma 

power and peak frequency shifts for size manipulation and the noise and contrast 

manipulations suggest that there is no fixed relationship between the gamma strength and 

its peak frequency. Modeling how oscillation strength and frequency change with these 
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manipulations could be a productive way to understand the properties of gamma rhythm 

and its relationship to excitation, inhibition and conduction delays.  
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2.7.3 Figure legends  

 

Figure 2.12 Peak frequency shifts in the gamma range with different stimulus 

manipulations. (A) Power spectra of LFP for gratings of different sizes (n=236 sites). (B) 

Power spectra of LFP for different levels of noise-masking (n=248 sites). (C) Power 

spectra of LFP for different stimulus contrasts (n=91 sites). 
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2.8 Appendix II – Effects of stimulus position on gamma tuning 

X.Jia designed and performed the experiments, analyzed data in this section. 

 

2.8.1 Introduction 

In Chapter 2, we described a surprising orientation tuning phenomenon in the gamma 

band (30-50Hz) of the LFP which shows shared tuning across large cortical regions (~16 

mm2) when stimulated with full contrast large gratings. The basis of the common 

preference is unclear. We propose that the preference of the global gamma rhythm 

reflects a neural representational bias based on the two following findings. First, the 

tuning of gamma for stimulus spatial and temporal frequency, across sites and implants in 

different animals, was nearly identical  and had a preference consistent with that most 

common for neurons in early visual cortex (Foster et al., 1985), which is illustrated in 

Chapter 2, figure 2.12. Second, in Chapter 3, we show that the orientation tuning of 

gamma is extremely sensitive to the bias in the neuronal responses introduced by 

adaptation. Together, these results indicate that the preference of gamma may magnify a 

bias in the neural response and that this bias can be significantly and transiently altered 

by recent experience.  

 

It has been suggested that V1 neurons over represent horizontal and vertical orientations , 

which could underlie the psychophysical phenomenon of ‘oblique effect’ (Li et al., 2003). 

However, we did not to observe a consistent preference for cardinal orientations in the 

global gamma rhythm. One possibility is that this inhomegeneity in preference across 

different implants could reflect an inhomogeneous representation of orientation within 
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the activated V1 region, which is not necessarily the cardinal orientation. Alternatively, 

the fact that gamma has a range of preference could be related to the proposal that the 

oblique effect in V1 neurons is an inadequate description of its coarse preference of a 

radial bias, that is neurons tend to prefer orientations specified by its angular-position 

relative to the fovea on the retinotopic map of V1 (Freeman et al., 2011).  

 

2.8.2 Method and results 

To test the alternative hypothesis, we recorded from neurons with receptive fields 2-5 

degrees from the fovea, in the lower visual field (typically with an azimuth and elevation 

of 2,-2) with multielectrode arrays. We used large gratings (10 degree) to induce the 

global gamma rhythm. We then manipulated the position of the large grating with respect 

to the center of the aggregate receptive field of the array, which is about 2-3 degree, 

accordingly, while always covering receptive fields of the array, as illustrated in Figure 

2.13A.  

 

We found that altering the location of a large stimulus in the visual field caused orderly 

shifts in the common orientation preference of the global gamma rhythm (Figure 2.13B, 

C). More specifically, when the position of the large grating was moved rightward, the 

general preference of gamma shifted toward 90 degree, whereas when the position of the 

grating was moved leftward, the general preference of gamma shifted toward 180 degree. 

 

The position of the visual field we recorded from relative to the fovea is illustrated in 

Figure 2.14A. When the array is implanted in the left hemisphere, the neurons we 
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recorded from the array are viewing (through a mirror) the right visual field indicated 

with a circle labeled RF. According to Freeman et al, the prediction made of the radial 

bias that RFs closer to the vertical meridian have an orientation bias towards 90 degree 

(e.g. prefer vertical gratings), whereas RFs closer to the horizontal meridian would have a 

tendency to prefer 180 degree on the left hemisphere and 0 degree on the right 

hemisphere. As a result, when activating different parts of the visual field with large 

gratings, the vector sum of the radial bias covered by the large grating shifts smoothly. 

With gratings shifting rightward, the radial bias shifts towards 90 degree and with 

gratings shift leftward, the radial bias shifts towards 180 degree (Figure 2.14B).  

 

A radial bias could potentially explain our observation of the smooth shift of gamma 

preference accordingly with the position of large gratings (Figure 2.13B). A further test 

of the radial bias theory in generating the orientation selectivity of the global gamma is to 

compare the gamma preference from implants in the left and right hemispheres. For 22 

implants, we observe a general tendency for the gamma orientation preference to 

concentrate in the 0-90 degree for right hemisphere implants and a tendency to 

concentrate in the 90-180 degree for left hemisphere implants (Figure 2.15). However, 

since our recording location is very close to the fovea, where the radial bias is noisier 

than in more peripheral regions (Freeman et al., 2011), our results can only demonstrate a 

possibility but cannot confirm the radial bias hypothesis in the generation of gamma 

preference. 
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In summary, our results of orientation preference in the global gamma could be related to 

the recent finding of Freeman et al that the representation of stimulus orientation has a 

radial bias. We were originally skeptical of this because, although we record at similar 

locations across animals, we find a range of preferred orientations for the global gamma 

rhythm. However, our experiments use large gratings, which always cover the RF of the 

recorded cells but which can be positioned slightly differently in different animals. Thus, 

the bias in the activated region of cortex can vary.   
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2.8.3 Figure legends 

Figure 2.13:  The orientation preference of global gamma depends on the spatial location 

of the visual stimulus. (A) To test further whether the common orientation preference of 

the gamma rhythm reflects a bias in the responding neural population, we presented large 

gratings (10 degrees in diameter) at different locations in the visual field (represented by 

black circle). The numbers to the left indicate the offset between the center of the 

stimulus and that of the aggregate neuronal receptive field of all recording sites from the 

same implant. The stimulus always covered all of the neuronal receptive fields (indicated 

by the red oval). We reasoned that since the population responding to the stimulus would 

differ across locations, with some overlap, the bias should change as well. (B) 

Distributions of orientation preference for gamma. Each row corresponds to the 

preference measured for a particular location. There is a clear shift in the most commonly 

preferred orientation, from roughly 135 degrees in the top histogram to 180 degrees in the 

bottom. (C) A similar phenomenon for a second implant.   
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Figure 2.14: A schematic prediction of orientation bias based on retinotopic map in V1. 

(A) An illustration of visual field and the radial bias prediction with receptive field of the 

array implants indicated in black circle. (B) An illustration of the relative position of the 

aggregated receptive field of the array (red eclipse) and activated visual field region with 

large grating stimuli (black circle; solid and dashed).  
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Figure 2.15: Preference distribution from different implants. The circular variance on the 

y axis indicates the degree of similar tuning on each implant, with value closer to 0 

corresponding to a tighter cluster. Blue dots indicate left hemisphere implants (n = 14 

implants) and red dots indicate right hemisphere implants (n = 8 implants).  
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Chapter 3: The effects of adaptation on the local field potential 
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3.1 Abstract 

Adapting a sensory system with repetitive or prolonged exposure to the same stimulus 

reduces responsivity to that stimulus. Such adaptation-induced changes have been 

detected in single-unit recordings and with functional magnetic resonance imaging 

(fMRI). However, how adaptation affects the local field potential (LFP) is poorly 

understood. We undertook a study of this issue with three goals in mind. First, we aimed 

to provide a description of the plasticity of this signal. Since the LFP have been proposed 

as a useful signal for driving external devices with brain signals (brain-machine interface), 

it is important to know whether it is a stable signal or a particularly plastic one. Second, 

as a signal of intermediate scale between single neurons and more global signals like 

those measured in fMRI, understanding the LFP may help to bridge findings between 

these levels of study. Finally, we have found that the gamma frequency (30-50 Hz) 

components of the LFP share a common orientation preference across many millimeters 

of cortex. We hypothesize that this preference reflects a subtle bias in the underlying 

neuronal representation and use adaptation as a tool to explore this possibility. We 

measured the effects of adaptation on the LFP, and compared these with spiking activity 

recorded simultaneously. Low frequency power of the LFP was untuned both before and 

after adaptation. The gamma power induced with large grating stimuli showed significant 

suppression at the adapted orientation and facilitation at the orthogonal orientations, 

regardless of the original preference of the signal. High frequency components of the LFP 

showed similar adaptation effects as local spiking activity. Changes in LFP power were 

associated with changes in coherence with spiking activity at gamma but not low 

frequencies. Our results suggest that the preference of the global gamma rhythm is 
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sensitive to adaptation, in a manner consistent with it magnifying a bias in the neuronal 

representation of visual stimuli, and that this signal may be a neural correlate of fMRI 

adaptation effects. More generally, our results show the LFP is sensitive to the recent 

history of stimulation, and that the effects are different for distinct frequency components 

of the signal. 
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3.2 Introduction 

The repeated or prolonged presentation of a sensory stimulus--adaptation--can strongly 

alter neuronal responses. This form of plasticity also alters our perception and has been 

used widely in psychophysics (Graham, 1989). In cortex, adaptation is well known to 

reduce the responsivity of cortical neurons whose preferences match the adapter and to 

have less effect on neurons with offset preferences (Grill-Spector et al., 2006; Kohn, 

2007). Adaptation-induced plasticity can occur at different time scales, ranging from tens 

or hundreds of milliseconds (Dragoi et al., 2002; Felsen et al., 2002; Muller et al., 1999; 

Priebe and Lisberger, 2002) to many seconds or minutes (Giaschi et al., 1993; Hammond 

et al., 1988; Kohn and Movshon, 2003, 2004).  

 

The local field potential (LFP) consists of low frequency extracellular voltage 

fluctuations (<200 Hz) measured in the brain and is thought to reflect aggregated 

electrical activity from a neural ensemble (Buzsaki, 2006; Mitzdorf, 1985). Changes in 

different frequency bands of the LFP have been correlated with numerous cognitive and 

perceptual phenomena (Fries et al., 2008; Pesaran et al., 2002; Scherberger et al., 2005; 

Wilke et al., 2006). Extensive studies have explored the basic response properties of the 

LFP signal (Berens et al., 2008; Gieselmann and Thiele, 2008; Henrie and Shapley, 2005; 

Liu and Newsome, 2006). However, there have been relatively few investigations of the 

effects of adaptation on the LFP (De Baene and Vogels, 2010; Hansen and Dragoi, 2011; 

Kaliukhovich and Vogels, 2011; Logothetis et al., 2001). Except for the null result 

(Logothetis et al., 2001), studies in monkey inferior temporal cortex showed that 

adaptation generally reduced power of the LFP in the frequency range of 60-100 Hz, but 
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not in lower frequencies (De Baene and Vogels, 2010; Kaliukhovich and Vogels, 2011). 

On the contrary, another study showed enhanced spike-field coherence in the gamma 

frequency (30-50Hz) with adaptation (Hansen and Dragoi, 2011). As a result, the 

adaptation effects on the LFP are still unclear.  

 

Understanding the effects of adaptation on the LFP is important for the following reasons. 

First, as a basic neural signal that reflects neural population activity and is potentially 

useful for brain-machine interface (Heldman et al., 2006), it is important to understand 

the plasticity and sensitivity of LFP to sensory stimuli, in addition to its other basic 

response properties. Second, different frequency bands of the LFP have been suggested to 

have distinct origins (Berens et al., 2008; Liu and Newsome, 2006; Ray and Maunsell, 

2011a). By comparing adaptation effects in different frequency bands of the LFP with 

effects on local spiking activity, we may gain more insight into the relationship between 

these two signals. Third, similar to cortical neuronal responses, the blood-oxygen level 

dependent functional magnetic resonance imaging (BOLD-fMRI) signal can adapt to the 

prolonged presentation of a visual stimulus (Boynton and Finney, 2003; Engel, 2005; 

Fang et al., 2005; Grill-Spector and Malach, 2001; Krekelberg et al., 2006; Tootell et al., 

1998). However, the mechanisms underlying fMRI adaptation are still unclear and effects 

on the firing of single neurons may not be indicative of changes in the hemodynamic 

signal because of the significant differences in the two signals. As a signal with 

intermediate spatial resolution between spiking activity and BOLD-fMRI, understanding 

the adaptation effects of the LFP, especially its gamma frequencies (30-50 Hz) which 

have been suggested to be more closely related to the fMRI signal than spikes (Leopold 
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et al., 2003; Logothetis et al., 2001; Nir et al., 2007), may be helpful for interpreting 

adaptation-induced changes in the BOLD signal.  

 

In addition to these general goals, we studied the adaptation properties of the LFP 

because of a peculiar property of its gamma frequency components. In Chapter 2 we 

showed that broadband gamma component and higher frequencies of the LFP behave 

similarly to local spiking activity (Jia et al., 2011; Ray and Maunsell, 2011a). The gamma 

spectral 'bump', on the other hand, is generated intrinsically from a neural network that 

extends for many millimeters, with shared response properties across that cortical region 

(Jia et al., 2011). We wondered why some orientations would induce more gamma power 

than others over such a large region. One hypothesis is that the shared tuning of the 

global gamma reflects a neural representation bias. With a limited sampling from a large 

network, detecting such a bias is difficult. Here we use adaptation to introduce a bias to 

the neural representation of orientation in V1. If the global gamma component magnifies 

a presumed bias in the neuronal representation of orientation, adaptation-induced changes 

in neuronal response should have a strong consequence for gamma tuning.   

 

To address these issues, we measured the effect of prolonged adaptation on the 

orientation selectivity of the LFP from a 4×4 mm patch of cortex using multielectrode 

arrays implanted in superficial layers of primary visual cortex. We found that the effects 

of adaptation depended strongly on the frequency range of the LFP and that the global 

gamma rhythm is extremely sensitive to adaptation-induced changes in neuronal 
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representation, in a manner consistent with its preference magnifying a weak bias in that 

representation. 
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3.3 Materials and methods 

Animal preparation and recording 

We recorded from eight anesthetized, adult male macaque monkeys (Macaca fascicularis). 

Anesthesia was induced with ketamine (10 mg/kg) and maintained with isoflurane (1.5-

2.5% in 95% O2) during venous cannulation. The animal was then placed in a stereotax 

and anesthesia was provided by intravenuous infusion of sufentanil citrate (6-18 µg/kg/hr, 

adjusted as needed for each animal), in normosol with dextrose (2.5%). Vecuronium 

bromide (0.1 mg/kg/hr) was administered to suppress eye movements. Temperature was 

maintained at 36-37 C°. Physiological signs were monitored (electrocardiogram, blood 

oxygen level, end-tidal CO2, electroencephalogram, temperature, and urinary output and 

osmolarity) to ensure adequate anesthesia and animal well-being. A broad-spectrum 

antibiotic (Baytril, 2.5 mg/kg) and an anti-inflamatory steroid (dexamethasome, 1 mg/kg) 

were administrated daily. All procedures were approved by the Institutional Animal Care 

and Use Committee of the Albert Einstein College of Medicine at YeshivaUniversity and 

were in compliance with the guidelines set forth in the United States Public Health 

Service Guide for the Care and Use of Laboratory Animals. 

 

We implanted multielectrode arrays (10x10 grids with 0.4 mm spacing and 1 mm 

electrode length) into the upper layers (0.6-0.8 mm deep) of primary visual cortex (V1), 

~10 mm lateral to the midline and ~8 mm posterior to the lunate sulcus. The electrical 

signal on each electrode was filtered between 250 Hz and 7.5 kHz to provide spiking 

activity. Events that exceeded a user-defined threshold were sampled at 30 kHz and saved 

for offline sorting. Raw signals were filtered between 0.3 Hz and 250Hz and sampled at 1 
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kHz to provide local field potentials (LFPs). Spiking activity were sorted using 

commercial software (Plexon Offline Sorter) and standard algorithms and criteria to 

further remove noise. The sorted spikes from the same recording site are grouped 

together and defined as multi-unit activity (MUA). 

 

In some experiments, a separate linearly arranged multielectrode device (Thomas 

Recording) was positioned between the lunate sulcus and the array, with each electrode 

referenced to the guide tubes. Raw signals recorded from this device were band-pass 

filtered between 0.5 Hz and 250 Hz, and digitized at 1 kHz. To remove 60 Hz noise and 

its harmonics, we applied a fourth order Butterworth band-stop filter to the raw LFP data.  

 

Visual stimuli 

Visual stimuli were generated with EXPO and presented on a CRT monitor (resolution 

1024 by 768 pixels; refresh rate 100 Hz) placed 110 cm from the animal. We mapped the 

receptive fields by briefly presenting small, full contrast drifting gratings (0.6 degree; 250 

ms duration) of different orientations at a range of spatial positions. The spiking 

responses at each site were fitted with a 2D Gaussian to determine the receptive field 

location and extent.  

 

We used these measurements to center full contrast gratings on the aggregate receptive 

field. Visual stimuli consisted of sinusoidal gratings with a fixed spatial (1 cycle/degree) 

and temporal frequency (6.25 cycle/second) drifting at 16 directions with 22.5 degree 

separation. We used an adaptation protocol similar to that used in previous neuronal and 
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fMRI studies (Figure 3.1A). The orientation tuning was measured with full contrast 

gratings drifting in 16 directions, which gives rise to two orientations that match the 

adapter but only one condition matching its direction. The stimuli were presented for 1 

second followed by a 5 second inter-stimulus interval during which a blank, grey screen 

was shown. After 20 presentations of each test stimulus (in block randomized fashion), a 

single grating was presented continuously for 40 seconds and orientation tuning was 

measured again with the same test gratings, separated by top-up presentations (5 seconds) 

of the adapter to maintain the adaptation effects.  

 

We used two stimulus sizes: 7.4 degrees and 1.28 degrees. The larger one is extensive 

enough to cover the spatial receptive fields of all recording sites. Since the small grating 

did not cover the receptive fields of all units, we only analyzed sites whose receptive field 

centers were covered by the smaller stimulus.  

 

Data analysis 

Tuning of the LFP was based on its average power in 4 Hz bins, sampled from low (0-

20Hz), gamma (30-50Hz) and high frequencies (180-200Hz). An orientation selectivity 

index (OSI) was calculated as the vector sum of the response vectors (combining 

responses to different drift directions of the same orientation), normalized by the sum of 

lengths of the vectors (Leventhal et al., 1995). For computing the OSI, we defined 

response strength with respect to that driven (MUA) or induced (LFP) by the least 

preferred orientation.  
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We analyzed the power spectrum of the LFP (after discarding the first 100 ms of the 

response) and spiking activity with a multi-taper method. We applied 8 orthogonal 

Slepian tapers to the data (k=2TW-1), where T is 900 ms and W is determined to be 5 Hz. 

The LFP was treated as a continuous signal. The spike train was treated as a discrete 

signal, binned with 1 ms resolution into a sequence of event times (Pesaran et al., 2002).  

To evaluate how changes in LFP power affect their interaction with spiking activity, we 

compared the coherence between spikes and LFP (spike-field coherence; SFC) before 

and after adaptation for orientations similar and orthogonal to the adapter. Coherency was 

calculated by normalizing the cross-spectra between LFP and spike train by the geometric 

mean of their auto-spectra:  

. 

 Cxy is a complex number. The modulus of the complex number represents the value of 

coherence, which lies between 0 and 1.  

 

Neuronal spike count correlation across stimulus repetitions was calculated with Pearson 

correlation:   

 

where N1 and N2 are the spike counts of neuron 1 and 2 respectively for time epoch 

between 100 ms after stimulus onset to 1 second. E is the expected value, and σ is the 

standard deviation of the responses. (Kohn and Smith, 2005). 

 

All error bars are presented as standard error of the mean (s.e.m.).   
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3.4 Results 

In order to compare adaptation effects on the LFP and spiking activity, we recorded 

multi-unit activity (MUA) and LFPs simultaneously using multi-electrode arrays 

implanted in the primary visual cortex (V1) of 8 anesthetized macaque monkeys. 

 

Effects of adaptation on the orientation tuning of the LFP  

To evaluate how adaptation affects spiking activity and the LFP, we compared 

orientation tuning before (black) and after (red) adaptation to a single large drifting 

grating, for a range of frequency bands of the LFP and for spiking activity (Figure 3.1A; 

Method). Figure 3.1B shows the normalized orientation tuning for sites at which the 

adapter matched the preferred orientation before adaptation (within 22.5 degrees), with 

spiking activity shown on the left and effects for three frequency ranges of LFP power on 

the right. The population tuning curves were computed by averaging data from sites with 

similar pre-adaptation preferences (bins of 22.5 degrees) after normalizing the responses 

at each site by its maximum response before adaptation. Figure 3.1C shows data from 

sites at which tuning preference was orthogonal to the adapter (within 22.5 degrees). The 

tuning curves from individual sites are shifted so that the adapted orientation is always 

presented as 180 degree.  

 

Consistent with previous reports (Dragoi et al., 2000), spiking responses were suppressed 

at preferred-adapted sites. Spontaneous activity—that measured in response to a gray 

screen—was also reduced after adaption, with the averaged firing decreasing from 

6.0±0.3 to 5.1±0.4 spk/sec (ttest2 p=0.08). For preferred-adapted neurons, the stimulus 
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evoked response (i.e. the response relative to the spontaneous rate) at the preferred 

orientation decreased by 17.2±4.3%, but only decreased by 2.7±1.9% for the orthogonal 

orientations (n = 107 sites), indicating that the effects were strongest for stimuli matched 

to the adapter. For neurons whose preference was orthogonal to the adapter, opposite to 

the preferred adaptation condition, orthogonal adaptation increase spontaneous activity 

by 10.7±3.3%. The evoked response at the adapter decreased by 7.9±6.9%, and decreased 

by 1.7±4.7% at the orientations orthogonal to the adapter (n =126 sites). Thus, for spiking 

activity, adaptation caused a greater reduction in responsivity for cells whose preference 

was within 22.5 deg of the adapter (Fig. 1B left) than for those with the orthogonal 

preference (Fig. 1C left), confirming that adaptation alters the neuronal representation of 

orientation. 

 

The low frequencies of the LFP are not well-tuned, whereas gamma and higher 

frequencies are more selective (Berens et al., 2008; Jia et al., 2011; Liu and Newsome, 

2006). Therefore, we measured the effects of adaptation on the LFP for individual 

frequency bands. Consistent with previous findings, we found no orientation tuning in the 

low frequency power (0-4Hz) of the LFP before adaptation, or any clear orientation-

dependent changes after adaptation (n = 110 sites). However, there was a consistent 

increase in low frequency power of spontaneous activity after adaptation, for both 

preferred-adapted and orthogonal adapted-conditions. Note that because sites were not 

well tuned, the labeling of a site as preferred- or orthogonal-adapted carried little 

meaning, and similar effects were seen in both portions of the data. 
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For gamma frequencies (36-40Hz), power was tuned for orientation before adaptation. 

Here we used large gratings to induce strong gamma ‘bump’ power, which can dissociate 

from local spiking activity and form a coherent rhythm. Adaptation caused a dramatic 

reduction in response to test stimuli matched to the adapter, and facilitation at orthogonal 

orientations. This was true at both preferred-adapted (n=110 sites) and orthogonally-

adapted sites (n = 219 sites). For sites whose gamma preference was similar to the 

adapter, the response decreased by 48.1±1.7% (spontaneous activity subtracted) at the 

adapted orientation, but was enhanced by 51.8±2.7% for orthogonal orientations. For 

sites whose gamma preference was orthogonal to the adapter, power for stimuli matched 

to the adapter decreased by 29.5±1.0% and increased by 164.8±5.2% at orthogonal 

orientations. Thus, regardless of its preference, gamma power is extremely sensitive to 

adaptation with large gratings. 

 

To quantify further the effects of adaptation on gamma, we compared its preferred 

orientation before and after adaptation. Figure 3.2A shows the orientation preferences of 

one example array. Each dot (black before adaptation, red after) compares the preferred 

orientation of gamma and MUA at the same site (n = 93 sites). For this example, the 

orientation preference of gamma shifted away from the adapter (0 degree) at all sites. The 

range of preferences was also reduced after adaptation, with the circular variance 

dropping from 0.27 to 0.08. However, there were no notable changes in the distribution 

of MUA preferences at those sites. Across implants (n=5), we found a significant 

reduction in the circular variance of gamma preference (0.29±0.07 to 0.09±0.03; p=0.03), 

so that there was a tighter clustering of preferences after adaptation. Figure 3.2B shows 
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the changes in preferred orientation after adaption (n = 536 sites), with values larger than 

0 representing repulsive shifts and values less than 0 representing attractive shifts. We 

found that when the preferred orientation of gamma was more similar to the adapter (0 

degree offset on the abscissa), the preferences shifted nearly to the orthogonal orientation. 

When the pre-adaptation preferred orientation was orthogonal to the adapter, there was 

little shift in preference.  

 

Adaptation reduces the responsivity of neurons in a specific manner (Figure 3.1B,C; see 

Kohn, 2007 for a review). If the tuning of gamma reflects a bias in the neural response, it 

should thus shift strongly away from the adapter, since neurons responding to that 

stimulus will be most strongly suppressed. We found that the effect of adaptation on 

gamma was also evident when comparing the distributions of preferred orientation before 

and after adaptation in a single implant (Figure 3.2C). In this case, the adapter (indicated 

by the arrow) was well aligned with the most commonly preferred orientation, and 

adaptation caused a striking shift in preference to the orthogonal orientation (mean offset 

increasing from 20.7±1.9 deg to 65.4±2.5 deg; p<<0.001). After a period of several 

minutes without visual stimulation, the distribution of preferences nearly fully recovered 

to its pre-adaptation form. Across implants (n=8), there was a pronounced tendency for 

the preference to shift toward the orientation orthogonal to the adapter (Figure 3.2D). In 

those cases that the preference was nearly orthogonal to the adapter before adaptation, we 

observed smaller shifts. This is consistent with the behavior expected from a signal 

whose preference reflects the overall level of activity evoked by different stimuli in a 

large, distributed network. 
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In the higher frequencies of the LFP (196-200Hz), adaptation effects were more similar 

to spiking activity (Figure 3.1B, C). For sites whose preference was similar to the adapter, 

the response decreased by 23.0±2.6% at the adapted orientation, and reduced by 8.6±0.1% 

at orthogonal orientations. For sites whose preference was orthogonal to the adapter, 

power for stimuli matched to the adapter decreased by 11.3±1.8% from the pre-

adaptation level and decreased by 11.3±0.1% at the orthogonal orientations. 

 

To illustrate how adaptation alters LFP power across a wider range of frequencies, we 

calculated the ratio of the power spectra (after/before) adaptation for several orientations 

(Figure 3.3A; n = 480 sites). The adapted orientation (red line) was suppressed most 

strongly in the gamma band, an effect seen in higher frequencies as well. In addition, the 

suppression effect is direction specific, with less suppression at the orientation matched 

to the adapter but drifting in the opposite direction (black line). Interestingly, the 

facilitation for the orthogonal or near-orthogonal orientations was restricted to 

frequencies from 20 to 60 Hz; higher frequencies showed suppression for these stimulus 

conditions. Power of spontaneous activity was significantly enhanced in the low 

frequencies (<20 Hz) after adaptation, and suppressed for frequencies higher than 70 Hz. 

Figure 3.3B presents the adaptation-induced change in power for all orientations. The 

strongest suppression occurred at the adapted orientation (180 degrees), and response 

facilitation is strongest for orthogonal orientations in the gamma band.  

 

In summary, spiking activity showed the strongest suppression at the preferred adapted 
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orientation, effectively reducing the representation of the adapted orientation. This 

change in the neuronal population spiking response was associated with a range of effects 

in the LFP. High-frequency LFP power adapted similarly to the spiking response, 

suggesting that these frequencies components may be tightly linked to local spiking 

activity. This would be consistent with the similarity in tuning between these two signals 

at individual sites (Gray and Singer, 1989; Katzner et al., 2009; Liu and Newsome, 2006). 

Low frequency power, on the other hand, showed no orientation specific changes, 

suggesting that it is strongly dissociated from local spiking activity, consistent with its 

poor tuning. Gamma power showed the most dramatic effects: it was strongly suppressed 

at the preferred adapted orientation and facilitated at the orthogonal orientation. This is 

consistent with proposal that the preference of gamma magnifies a weak bias in the 

neural representation: when adaptation suppresses the representation of a particular 

stimulus, the preference of gamma shifts dramatically.  

 

Role of stimulus size 

We have previously shown that large gratings induce a rhythm which can be coherent 

across millimeters of cortex. The power in the gamma band under these conditions is 

dominated by this rhythm, rather than the broadband change in power, which behave 

similarly to local MUA. The responses described above relied on responses driven by 

large gratings, so the adaptation effects observed reflected should have reflected changes 

in the coherent rhythm. To test this further, we  studied adaptation effects on LFP power 

induced by small grating stimuli (1.28 degree), for which there is a stronger contribution 

of the broadband component to  gamma power (Gieselmann and Thiele, 2008; Jia et al., 
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2011; Ray and Maunsell, 2011a). We used the same adaptation protocol and a subset of 

sites recorded with large gratings, namely those that were driven by the small grating. 

 

Figure 3.4A shows the ratio of the power spectra after and before adaptation, for signals 

induced by small gratings (n=238 sites). The effect of adaptation on gamma was 

significantly smaller than for large stimuli (Figure 3.3A). Whereas we observed a 3.1 fold 

increase in power at orthogonal orientations for gamma induced by large gratings, the 

corresponding effect was 1.9 fold for small gratings. Figure 3.4B shows the ratio of the 

power spectra as a function of orientation, with 180 degree representing the adapted 

orientation. This reveals more suppression for the orientation matched to the adapter and 

less enhancement in gamma power at the orientations orthogonal to the adapter, 

compared to data from large gratings (Figure 3.3B). In this data set, the proportion of 

gamma spectrum ‘bump’ in the total gamma power is 27.6±0.6% with large grating 

stimuli (predicted with same method as detailed in result section for Figure 2.5 of 

Chapter 2), while the proportion of gamma ‘bump’ power is 7.2±0.6%  of the total 

gamma power with small grating stimuli. These results suggest that the enhancement in 

gamma power at orientations orthogonal to the adapter was related to the strength of the 

gamma ‘bump’. 

 

Interaction between spiking activity and the LFP 

Comparing how the tuning of spikes and LFP are affected by adaptation provides one 

view of the relationship between these two signals. A more complete picture of this 

relationship can be provided by examining the correlation between fluctuations in spiking 
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activity with LFP. To this end, we examined whether adaptation-induced changes in the 

LFP would affect the interaction with spiking activity. We compared spike-field 

coherence (SFC; see Method), a measure of temporal correlation between spike times and 

the LFP for individual frequencies, before and after adaptation.   

 

Figure 3.5A shows the effect of adaptation on SFC (after-before; n=480 sites) as a 

function of frequency, for orientations similar to the adapter (180 degree) and 

orientations orthogonal to the adapter. The change in SFC during spontaneous activity is 

indicated with a dashed line. The most significant changes in the SFC occur at low 

(<10Hz) and gamma (30-50Hz) frequencies. Figure 3.5B quantifies the gamma SFC for 

all orientations, before and after adaption, and for all sites. Effects on low frequency SFC 

under stimulus driven conditions were not orientation-specific, but showed a general 

enhancement, which is on average 8.7±1.0% of the value before adaption. Gamma SFC 

was enhanced for most test stimuli, with a decrease only observed at the adapted 

orientation. The average gamma band SFC was reduced by roughly 2.9±1.5% of the 

value before adaptation at the adapted orientation, and increased roughly 33.7±2.5% after 

adaptation at the orientations orthogonal to the adapter (Figure 3.5C), which is similar to 

the effects on gamma power (Figure 3.1B). These results suggest that although the firing 

rate at the orientations orthogonal to the adapter did not change on average, spike timing 

was more strongly modulated in the gamma frequencies after adaptation. Our results 

suggest that prolonged adaptation enhances synchronization of spikes in the gamma 

frequencies, for responses driven by stimuli different from the adapter.  
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In addition, opposite to the enhancement in low frequency power after adaptation during 

blank stimuli (‘spontaneous’), we observed a significant reduction in the low frequency 

SFC (<10Hz; Figure 3.5A, dashed black line) during blank stimuli after adaptation, with 

a 23.7±2.0% reduction of the SFC value before adaptation. The opposite adaptation 

effects for low frequency power and the low frequency SFC suggests that the SFC 

measurement does not depend simply on power. 

 

Adaptation effects on neuronal correlation 

Spatial attention can suppress low frequency power of the LFP (Fries et al., 2008) as well 

as reduce neuronal correlation in V4 (Cohen and Maunsell, 2009; Mitchell et al., 2009). 

We have observed that prolonged adaptation suppressed low frequency power of the LFP 

during stimulus presentation, but increased the low frequency power during spontaneous 

activity. We next checked the effect of adaptation on neuronal correlation or noise 

correlation, a measure of how strongly trial-to-trial fluctuations in the response to a single 

stimulus are shared between pairs of neurons (Cohen and Kohn, 2011; Kohn and Smith, 

2005; Smith and Kohn, 2008).  

 

We compared pairwise neuronal correlation before and after prolonged adaptation with 

large gratings. Figure 3.6A presents the spike count correlations at the adapted orientation 

before (black) and after (red) adaptation. The mean spike count correlation (r_sc) 

increased from 0.178±0.002 to 0.246±0.002 (ttest2 p<<0.001; n=27208 pairs), roughly a 

38% enhancement compared to pre-adaptation, with a distribution median increased from 

0.182 to 0.250 (Mann-Whitney U-test p<<0.001). The spike count correlation showed a 
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general enhancement across orientations, from 0.166±0.001 to 0.181±0.001 (ttest2 

p<<0.001; Figure 3.6B), a 9% change, with the median of distribution increased from 

0.166 to 0.181 (Mann-Whitney U-test p<<0.001). Note that the increase in spike count 

correlation is larger for the adapted orientation than average. Correlation also increased 

for spontaneous activity after adaptation, from 0.306±0.002 to 0.320±0.002 (ttest2 

p<<0.001). However, the median of the distribution decreased significantly from 0.328 to 

0.322 (Mann-Whitney U-test p=9.4e-4) after adaptation.  Consistent with previous work 

(Smith and Kohn, 2008), neuronal correlations were stronger during spontaneous activity 

than for visually driven activity. 

 

We conclude that the effect of adaptation on neuronal correlation is more similar to the 

changes in low frequency SFC (<10Hz), which were enhanced for stimulus driven 

conditions after adaptation, rather than to low frequency power, which was reduced for 

stimulus driven condition after adaptation. The results for spontaneous activity are mixed. 

The median of the neuronal spike count correlation decreased after adaptation, similar to 

the low frequency SFC, but the mean spike count correlation increased. However, in 

general, neuronal correlation showed a positive relationship with the low frequency SFC 

(<10Hz).   
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3.5 Discussion 

Prolonged adaptation has different effects on different frequency bands of the LFP. The 

low frequency band (<10Hz) had no orientation tuning before or after adaptation, and 

adaptation caused a general reduction of power for all stimuli. Higher frequencies of the 

LFP (> 100 Hz) adapted similarly to local spiking activity, with responses to the adapted 

orientation showing weak suppression. Gamma frequencies showed the strongest effects. 

For large gratings, which induce a distinct gamma spectral bump, power was significantly 

reduced at the adapted orientation and facilitated at offset orientations. This facilitation 

depends on the strength of the gamma ‘bump’: for small gratings, for which the gamma 

power reflects broadband LFP power, facilitation was much weaker. Adaptation-induced 

changes in LFP power had an effect on the interaction between spike timing and the LFP. 

The SFC in the low frequency (<10Hz) increased after adaptation for all orientations 

whereas the SFC in the gamma range was suppressed at the adapted orientation but 

enhanced at other orientations, with strongest increase at the orthogonal orientations. The 

enhancement in low frequency SFC is accompanied by an increase in neuronal spike 

count correlation.  

 

Evidence for the representation bias hypothesis 

We have shown that the gamma band of the LFP, when induced with large gratings, can 

form a spatially extensive coherent rhythm which is selective for different stimulus 

features (Chapter 2, Jia et al., 2011). Measured at individual recording sites, this 

selectivity is apparent as shared tuning. We previously proposed that the selectivity of 

this rhythm could reflect a bias in the neuronal representation that underlies the 
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generation of this rhythm. For instance, it could reflect the purported overrepresentation 

of cardinal orientations in V1 ("oblique effect", (Li et al., 2003)).  However, we found no 

preponderance of these orientations in the tuning of gamma. Alternatively, the relevant 

spatial scale could be smaller, such as a bias in the representation within several 

millimeters of the electrode tip.  This would be consistent with the finding that fMRI 

voxels of several cubic millimeters are orientation-tuned, thought to reflect that a finite, 

random sample of neurons will always result in a bias toward some orientation (Haynes 

and Rees, 2006).  

 

Our results in the current chapter support this proposal. The orientation selectivity of the 

global gamma rhythm induced by large gratings was extremely sensitive to the neuronal 

representation bias introduced by adaptation, which is indicated by a 3 fold stronger 

reduction the gamma power compared to neuronal firing rate, at the adapted orientation. 

This was true regardless of the gamma preference before adaptation. This result supports 

the hypothesis that the changes in gamma power magnify small differences in population 

firing rate, which makes it possible for a small bias in the neuronal representation to be 

reflected in a highly selective signal.  Under this interpretation, the facilitation arises 

because the gamma rhythm induced by large gratings magnifies the bias arising from 

stronger responses to stimuli that are different from the adapter. Using small stimuli, we 

found weaker facilitation at orientations further away from the adapter, suggesting this 

facilitation requires the presence of the gamma "bump".  
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Adaptation-induced changes in tuning were accompanied by a change in the relationship 

to the firing pattern of neurons, measured by SFC. Gamma SFC was strongly enhanced 

when gamma power was elevated. This suggests that in addition to its effects on neuronal 

firing rate, adaptation can strongly influence gamma coordinated spike timing (Hansen 

and Dragoi, 2011).   

 

Comparison with previous studies 

We are aware of several previous studies that evaluated the effects of adaptation on the 

LFP. The first compared the dynamics of averaged LFP power (40-130Hz, a combination 

of gamma and higher frequency components) and MUA (Logothetis et al., 2001). It 

found spiking activity was suppressed strongly and powerfully after stimulus onset, and 

that the LFP was better maintained throughout the stimulus presentation. The authors 

concluded that there is no adaptation effect on the LFP. In contrast, we observed more 

striking suppression for gamma power than spiking activity, inconsistent with this report. 

This difference may reflect, in part, that we calculated the average power and firing rate 

from 100 ms after stimulus onset till 1000 ms, and compared to activity before adaptation 

to evaluate the effect of adaptation. Logothetis et al. (2001), on the other hand, compared 

neuronal responses and broadband power to the baseline response before stimulus onset. 

The measurements are thus somewhat different. It bears mention, in addition, that the 

change in neuronal response reported by Logothetis et al (2001) involved a transient 

response that adapted quickly to the baseline (prestimulus level). Such drastic neuronal 

adaptation is inconsistent with a number of previous reports in the literature (Giaschi et 

al., 1993; Hammond et al., 1988; Kohn and Movshon, 2003; Movshon and Lennie, 1979).  
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Another study compared changes in SFC before and after adaptation in different cortical 

layers and found that adaptation induced stronger gamma band SFC in the superficial, but 

not in other layers (Hansen and Dragoi, 2011). This study did not report a suppression of 

SFC with adaptation in the gamma band, as we observed, but this likely reflects the fact 

that they averaged responses across orientations. A reduction in gamma SFC in our data 

was only apparent for the test stimulus whose orientation matched the adapter. In addition, 

the brief adaptation protocol (300 ms) used by Hansen and Dragoi (2001) may have 

affected SFC differently from the prolonged adaptation we studied.  

 

Effects of adaptation on the LFP have also been observed in inferior temporal cortex (IT) 

(De Baene and Vogels, 2010; Kaliukhovich and Vogels, 2011). These two related studies 

found similar adaptation effects in spiking activity and high-gamma power (60-100Hz), 

but not for low gamma frequencies (30-50Hz). This is consistent with our findings that 

the activity of higher frequencies is more similar to spiking activity, especially when the 

spectrum is dominated by the broadband power. However, the stimuli in this study did 

not induce a gamma spectrum bump, which appears to be a necessary condition for 

observing the strong facilitation of gamma at orthogonal orientations.  

 

Comparison with BOLD-fMRI signal 

It has been proposed that the LFP is more closely related to the BOLD-fMRI signal than 

spikes are (Goense and Logothetis, 2008; Kayser et al., 2004; Leopold et al., 2003; 

Logothetis et al., 2001; Nir et al., 2007). Our characterization of adaptation effects for 
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different frequency bands of the LFP provides an opportunity to revisit this question, as 

adaptation has been used widely to study both spiking activity and the BOLD signal. The 

effects of adaptation on the BOLD signal, in particular, have been used extensively to 

infer the functional representation in different parts of cortex (Grill-Spector and Malach, 

2001; Krekelberg et al., 2006). 

 

Similar to neuronal spiking activity, we found that adaptation caused the strongest 

reduction in responsivity at the adapted orientation in the higher frequencies of the LFP, 

consistent with the idea that these reflect local spiking activity. Gamma power was also 

suppressed at the adapted orientation but, in addition, was strongly enhanced at 

orthogonal orientations (on average two fold). Using a similar prolonged adaptation 

protocol, it has been found that the BOLD signal is suppressed at the adapted orientation 

after adaptation, but strongly facilitated at orthogonal orientations relative to baseline 

(Fang et al., 2005). Since visual stimuli used in fMRI studies are typically large and thus 

would be expected to generate a global gamma rhythm, this is consistent with previous 

proposals that gamma is more strongly correlated with the BOLD signal (Leopold et al., 

2003; Logothetis et al., 2001; Nir et al., 2007). Local spiking activity did not show a 

similar enhancement for orthogonal test stimuli, and thus had a behavior different from 

the BOLD signal. 

 

Adaptation effects on slow fluctuations  

Unlike the stimulus-specific adaptation effect in the gamma frequencies, the low 

frequency components of the LFP showed no orientation tuning before or after adaptation. 
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Instead, we observed a non-specific decrease in low frequency power. Therefore, this 

frequency range is unlikely to be correlated with the BOLD signal. However, low 

frequency power of spontaneous activity was significantly enhanced after adaptation with 

either small or large gratings. It has been suggested that the low frequency power of the 

LFP is correlated with less active brain states (Kohn et al., 2009). If the strength of low 

frequency power indicates a less excitable state, this suggests that the prolonged 

presentation of a stimulus could reduce excitability of the neuronal network, which is 

consistent with the reduction of the spontaneous spiking activity after adaptation.  

 

We observed a strong, non-specific enhancement in the low frequency SFC (<10Hz) after 

adaptation. This finding indicates that the spiking activity is more correlated with low 

frequency fluctuations after adaptation. This was also reflected in neuronal correlations. 

These results suggest that adaptation enhances the slow timescale neuronal correlation in 

the brain.  

 

Conclusions  

Our findings show that the global gamma rhythm is extremely sensitive to prolonged 

adaptation, which introduces a bias to the neural responses, consistent with the hypothesis 

that the tuning of the global gamma could represent a neural representational bias. The 

effect of adaptation on gamma power is more similar to the effects on the BOLD-fMRI 

signal, compared to spiking activity or other frequency bands of the LFP. When using 

LFP to interpret neural activity of a large ensemble in the brain (e.g. in BMI), it is 

important to understand its instability and note the different representations and dynamics 
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of different frequency components. Therefore, the sensitivity of the gamma rhythm along 

with its slow dynamics (Jia et al., 2011) might make it less suitable to decode fast 

changes in the brain.  
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3.6 Figure Legends 

 

Figure 3.1 Effect of adaptation on the tuning of MUA and LFP for large grating stimuli. 

(A) Illustration of the adaptation protocol. (B) Population average orientation tuning 

curves before (black) and after (red) adaptation for spiking activity (n=107 sites) and 

different frequency bands of the LFP. The orientation preferences were within 22.5 

degree range of the adapter. All tuning curves were aligned so that 180 degree always 

represents the adapted orientation (indicated by arrow). The LFP tuning curves are based 

on the average power in 4Hz bins for low frequencies (0-4Hz; n=110 sites), gamma 

frequencies (36-40Hz; n=110 sites), and high frequencies (196-200Hz; n=115 sites). (C) 

Similar to (B), population average tuning curves before (black) and after (red) adaptation 

for spiking activity (n=126 sites) and different frequencies of the LFP. The preferences 

were within 22.5 degrees of the orientation orthogonal to the adapter. The LFP tuning 

curves are based on the power in low frequencies (0-4Hz; n=219 sites), gamma 

frequencies (36-40Hz; n=219 sites), and high frequencies (196-200Hz; n=132 sites). The 

spontaneous activity before and after adaptation are shown with dashed lines. 
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Figure 3.2 Shifts of gamma preference after adaptation with large gratings. (A) Scatter 

plot (from a single array) of orientation preferences before (black) and after (red) 

adaptation for gamma and MUA. Each dot represents the preferred orientation of MUA 

and gamma measured from the same electrode. Marginal distributions are shown as 

histograms to the side of the scatter plot. The circular variances of the orientation 

preference distributions before and after adaptation are indicated in the marginal 

histograms. (B) The shift of preferred orientation in the gamma frequency, as a function 

of the original preference relative to the adapter. Each dot represents one recording 

electrode. Positive shift means away from the adapter.  (C) Distributions (from a single 

implant) of orientation preference for pre-adaptation, post-adaptation and recovery 

periods for gamma (upper) and MUA (lower). The circular variance is indicated at the 

upper-left of each histogram. Arrow indicates the orientation of the adapter. (D) 

Quantification of mean orientation preference of gamma, relative to the adapter, before 

and after adaptation (n=8 implants). 
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Figure 3.3 Change in power spectra after adaptation. (A) The ratio of power spectra 

(post/pre-adaptation) for orientations identical to the adapter (0 degree, black; 180 degree, 

meaning the same orientation but opposite direction, in red) and orthogonal to the adapter 

(90 degree, blue; 270 degree, green). Dashed black line with errorbar indicates the 

changes in power during spontaneous activity (n=480 sites). The flat dashed line 

indicates value of 1, meaning no change in power. (B) Mean ratio of power spectrum 

post/pre adaptation as a function of orientation. 180 degree represents the adapted 

orientation.  
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Figure 3.4 Change of power spectra after adaptation with small gratings. (A) The ratio of 

power spectra (post/pre-adaptation) for orientations identical to the adapter (0 degree, 

black; 180 degree, red) and orthogonal to the adapter (90 degree, blue; 270 degree, green). 

Dashed black line indicates the changes in spontaneous activity (n = 238 sites). The flat 

dashed line indicates value of 1, indicating no change in power. (B) Mean ratio of power 

spectrum (post/pre adaptation) as a function of orientation. 180 degree represents the 

adapted orientation. 
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Figure 3.5 Effects of adaptation on SFC. (A) Population average of difference in SFC 

after adaptation compared to before adaptation. The orientations identical (black and red) 

and orthogonal (blue and green) to the adapter, along with the spontaneous/blank stimuli 

condition (black dashed line) are plotted. Values above 0 indicate increased SFC. Dashed 

grey line at 0 indicates no change in SFC. (B) Averaged SFC in the low frequency 

(<10Hz) for all sites (n=480 sites) pre- (black) and post- (red) adaptation. Dashed lines 

indicate the low frequency SFC for spontaneous activity. (C) Averaged SFC in the 

gamma frequency band for all sites (n=480 sites) pre- (black) and post- (red) adaptation. 

Dashed lines indicate the gamma band SFC for spontaneous activity.   
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Figure 3.6 Effect of adaptation on neuronal spike count correlation. (A) Distributions of 

pairwise neuronal correlation before (black) and after (red) adaptation with a large 

grating, for orientations identical to the adapter (n = 27208 pairs). (B) Distributions of 

neuronal correlations averaged across orientations, before and after adaptation. (C) 

Distributions of neuronal correlations during spontaneous activity, before and after 

adaptation.  
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4.1 Abstract  

 

Gamma frequencies of the local field potential (LFP) are elevated during cognitive and 

perceptual functions. A number of proposals have suggested that gamma can influence 

neuronal population synchrony and that this enhances the relaying of signals between 

cortical areas. However, the precise relationship between spiking activity and gamma 

LFP power remains unclear, and the influence of coordinated spiking activity on 

corticocortical signaling remains largely untested. We investigated these issues by 

simultaneously recording from populations of neurons in V1 and V2 in anesthetized 

macaque monkeys. We used stimulus manipulations to alter gamma power and spatial 

coherence systematically over a broad range. We found that visual stimuli that induce a 

strong, coherent gamma rhythm result in V1 spiking activity that is more temporally 

coordinated, leading to an enhancement of pairwise and higher-order synchrony. To test 

the functional consequence of this on corticocortical communication, we measured the 

correlation of activity between V1 and V2 neurons. We found coupling was enhanced in 

a retinotopically-specific manner, when gamma was elevated. This was due primarily to 

the gamma modulation of V1 firing, rather than an influence of the V2 rhythm. Our 

results show that changes in gamma power are indicative of altered population synchrony 

and that greater spike timing correlation can influence corticocortical signaling. 
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4.2 Introduction  

Gamma band (~30-50 Hz) activity has been proposed to be an important coding 

mechanism in the brain. One proposal is that the timing of spiking activity relative to the 

phases of gamma cycle directly encodes sensory information ((Fries et al., 2007; Vinck et 

al., 2010), but also see (Kayser et al., 2009)). Gamma has also been proposed as a 

mechanism to link the distributed representation of sensory stimuli within a cortical area 

(Gray et al., 1989). A related, but distinct, proposal is that gamma determines a 

communication window to dynamically route information between neuronal populations 

(Colgin et al., 2009; Fries, 2009; Schoffelen et al., 2005a; Womelsdorf et al., 2007), 

particularly those in distinct cortical areas.  

 

All of the proposed functions of gamma rely on an interaction between gamma rhythms 

and spike timing. The mechanistic basis for such a modulation lies in the fact that the 

activity of inhibitory neurons fluctuates rhythmically within the gamma cycle (see 

reviews by (Bartos et al., 2007) and (Whittington et al., 2011)). If neurons are embedded 

in networks with strong gamma activity, fluctuating inhibition could synchronize spiking 

activity, potentially leading to more effective drive to downstream targets (Fries, 2009; 

Salinas and Sejnowski, 2001; Singer, 1999). If the downstream network also has strong 

gamma activity, the efficacy of synaptic input may be modulated by its phase with 

respect to the local gamma cycle, being maximal when it arrives at the excitatory phase 

of the rhythm in the target area (Fries, 2009).  
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Gamma-band modulation of spike timing in visual cortex has been studied by numerous 

groups. Some studies have found gamma-modulation of single cell and MUA spiking 

activity, and the synchrony between pairs of such units, but others have not (see reviews 

by (Fries, 2009; Gray, 1999; Singer, 1999) and Discussion). This may be due in part to 

differences in stimulus conditions, which are now known to strongly modulate gamma 

power in the LFP (Berens et al., 2008; Frien et al., 2000; Gieselmann and Thiele, 2008; 

Henrie and Shapley, 2005; Jia et al., 2011; Lima et al., 2010; Liu and Newsome, 2006; 

Ray and Maunsell, 2010). Recent studies have used the coherence between the LFP and 

single neuron spiking activity in the gamma band as an arguably more sensitive method 

for detecting shared, weak fluctuations in a distributed population (Fries et al., 2008; 

Gregoriou et al., 2009; Pesaran et al., 2002). However, how altered gamma spike-field (or 

spike-spike) coherence is reflected the coordination of spiking responses in a distributed 

neuronal population remains unclear. Gamma components of the LFP represent a small 

fraction of the power in that signal, so changes in gamma coherence may have a small 

effect on spike timing coordination overall. Further, neurons may be gamma-phase 

modulated at different times, reducing the coordination of the ensemble. To understand 

the gamma-band coordination of distributed spiking activity requires simultaneous 

recordings from populations of neurons, and systematic and controlled manipulation of 

gamma power. Despite widespread interest and speculation into the function of gamma, 

no study has performed such measurements.  

 

Knowing how changes in gamma power are reflected in altered ensemble activity 

provides a partial answer to its putative role in corticocortical communication. The 
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second issue is whether the strength of coordination is significant enough to affect the 

relaying of signals to downstream areas. Modeling studies suggest that signal 

transmission is more efficient when synchrony is enhanced (Akam and Kullmann, 2010; 

Knoblich et al., 2010; Salinas and Sejnowski, 2000, 2001), but these typically explore 

particularly strong gamma modulation, In vivo recordings have shown conditions under 

which interareal field-field or spike-field gamma coherence is elevated (Buschman and 

Miller, 2007; Frien et al., 1994; Gregoriou et al., 2009; Montgomery and Buzsaki, 2007; 

Popescu et al., 2009), but how this is reflected in altered coordination of spiking 

responses across areas is less clear. In particular, no study has provided a systematic, 

quantitative evaluation of how changes in gamma affect corticocortical coupling of 

spiking responses.    

 

Here we study the relationship between gamma power in the LFP, spiking synchrony and 

corticocortical communication in early visual cortex. To evaluate the relationship 

between gamma and spike timing, we recorded LFP and spikes in the superficial layers of 

primary visual cortex (V1) using microelectrode arrays. We used manipulations of 

stimulus size and orientation to modulate gamma strength in a controlled and parametric 

manner. We find that stronger and more spatially coherent gamma is associated with 

stronger gamma-modulation of spike timing and enhanced pairwise and higher order 

synchrony. To test the consequence of this coordination, we paired our V1 measurements 

with simultaneous recordings in V2, a direct downstream target of the V1 population. We 

find that when V1 activity is more coordinated, each V1 spike is more likely to be 
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followed by one in V2 several milliseconds later. Our results show that elevated gamma 

is associated with enhanced synchrony and more effective corticocortical coupling.  
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4.3 Materials and methods 

Animal preparation and electrophysiology 

We recorded from seven anesthetized, adult male macaque monkeys (Macaca 

fascicularis). Anesthesia was induced with ketamine (10 mg/kg) and maintained with 

isoflurane (1.5-2.5% in 95% O2) during venous cannulation. The animal was then placed 

in a stereotax and anesthesia was provided by intravenuous infusion of sufentanil citrate 

(6-18 µg/kg/hr, adjusted as needed for each animal), in normosol with dextrose (2.5%). 

Vecuronium bromide (0.1 mg/kg/hr) was administered to suppress eye movements. 

Temperature was maintained at 36-37 C°. Physiological signs (electrocardiogram, blood 

oxygen saturation, end-tidal CO2, electroencephalogram, temperature, and urinary output 

and osmolarity) were monitored to ensure adequate anesthesia and animal well-being. A 

broad-spectrum antibiotic (Baytril, 2.5 mg/kg) and an anti-inflammatory steroid 

(dexamethasome, 1 mg/kg) were administrated daily. All procedures were approved by 

the Institutional Animal Care and Use Committee of the Albert Einstein College of 

Medicine at Yeshiva University.  

 

We implanted a 100 multielectrode array (10x10 grid with 0.4 mm spacing and 1 mm 

electrode length) in the upper layers (0.6-0.8 mm deep) of primary visual cortex (V1), 

~10 mm lateral to the midline and ~8 mm posterior to the lunate sulcus. The signal on 

each electrode was filtered between 250 Hz and 7.5 kHz to provide spiking activity. 

Events that exceeded a user-defined threshold were sampled at 30 kHz and saved for 

offline sorting. Raw signals were also filtered between 0.3 Hz and 250 Hz and sampled at 

1 kHz to provide local field potentials (LFPs). To record responses in V2, a separate 
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multielectrode device was used, which consisted of up to 7 independent electrodes and 

tetrodes (305 micron spacing; Thomas Recording). Raw signals recorded from this device 

were filtered between 0.5 Hz and 200 Hz for LFPs (digitized at 1 kHz) and 500 Hz and 

10 kHz for spiking activity (events exceeding a threshold were sampled at 40 kHz).  

 

To remove 60 Hz noise from the LFP, we applied a fourth order Butterworth band-stop 

filter to the raw data. Spikes were sorted using commercial software (Plexon Offline 

Sorter) and standard algorithms and criteria. Only units with a signal-to-noise ratio (Kelly 

et al., 2007) larger than 2, corresponding to single units and small clusters of such cells, 

were used for further analysis. This typically corresponded to considering responses from 

the top half of recording sites, in terms of recording quality. Our results were not 

sensitive to the precise section of data considered. 

 

Visual stimulation 

Stimuli were generated with EXPO (https://corevision.cns.nyu.edu/) and presented on a 

linearized CRT monitor (1024x768 pixels; refresh rate 100 Hz) placed 110 cm from the 

animal. We mapped the receptive fields of V1 and V2 recording sites by briefly 

presenting small, full contrast drifting gratings (0.6 degree; 250 ms) of different 

orientations at a range of spatial positions. The spiking responses at each site were fit 

with a 2D Gaussian to determine the location and extent of the spatial receptive fields.  

We used these measurements to center full contrast gratings on the aggregate receptive 

field. Gratings had a fixed spatial frequency (1 cycle/degree) and temporal frequency 

(6.25 cycle/second).  



159 
 

 

We used two sets of stimuli. The first contained gratings drifting in 16 different 

directions, with sizes ranging from 1-10 degrees; each stimulus was presented for 1 

second in pseudorandomized order (30 repetitions). These stimuli were viewed 

monocularly and used to characterize size-dependent effects (n=6 implants). The second 

set of stimuli used only small (2-3.5 degree) and large (10 degree) grating of 8 

orientations, but each was presented 300-400 times (1.28 s with 1.5 interstimulus interval) 

to provide us with a sufficient number of spikes to investigate timing relationships in 

detail (n=5 implants). Large and small stimuli were presented in separate blocks of trials, 

so the number of recorded neurons varied slightly between conditions with this stimulus 

protocol. These stimuli were viewed binocularly. 

 

Data analysis 

We analyzed response epochs when gamma was prominent and firing rates were 

relatively stationary, which we defined as 100 ms after stimulus onset until the end of the 

stimulus presentation. For all comparisons involving stimuli of different sizes, we 

included only recording sites whose receptive field center was within the radius of the 

smallest grating.  

 

We analyzed the power spectrum of the LFP and spiking activity with the multi-taper 

method, using the Chronux Toolbox. We applied k = 2WT-1 orthogonal Slepian tapers to 

the data, where T is the duration of the data and W is the half bandwidth of the smoothing 



160 
 

window, which we chose to be 5 Hz. The LFP signal was treated as a continuous signal 

and its power spectrum (Sxx) was calculated by computing the Fourier transform:  
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Spike trains were treated as a discrete signal, binned with 1 ms resolution into a sequence 

of event times jt in time window [0 T]. The spectrum was estimated using the Fourier 

transform of a counting process: 
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where N(T) is the total number of spikes in that time window and (0)kw is the Fourier 

transform of the tapers (Pesaran et al., 2002; Zhou et al., 2008).  

 

We evaluated the relationship between spike timing and gamma using a number of 

complementary metrics. First, we evaluated spike-field coherence (SFC) by calculating 

the coherency, Cxy, as the cross-spectra between signals x and y normalized by the 

geometric mean of their auto-spectra:  

,    (4)  

where Sxx and Syy are calculated in equation 2 above, Sxy is calculated as: 
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where Yk
* is the complex conjugate of Yk. Cxy is a complex number. Its modulus 

represents the value of coherence, which lies between 0 and 1. The absolute value of the 

phase of this complex number is the relative phase difference between the two signals. 

 

Estimating SFC using spike activity and LFPs recorded on the same electrode can result 

in spectral contamination due to leakage of the action potential waveform into the LFP. 

We therefore calculated SFC between the spiking activity on each electrode and the LFPs 

recorded at neighboring sites (0.4 mm distant). The SFC values in Fig 1B are the average 

of these SFCs. We confirmed visually that this procedure effectively removes spiking 

contamination of the SFC.  

 

We analyzed the phase of spikes with respect to the gamma cycle by using a 4th order 

bandpass filter to isolate 30-50 Hz frequency component of the LFP. We then applied the 

Hilbert transform to estimate the phase of this complex signal at each time instant, and 

counting the number of spikes occurring in each 45 degree bin. The preferred phase, ϕpref, 

for each neuron was defined as:  
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where nR  is the spike count of the nth bin relative to the minimum spike counts across 

bins and n  is the center phase of the nth bin. We determined the clustering of spikes in 

the gamma cycle, or phase bias, as: 
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To evaluate the relationship between spike times in pairs of neurons, we calculated the 

cross-correlogram (CCG) between the two spike trains 1x and 2x  (Kohn and Smith, 2005): 
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where M is the number of trials and N is the number of time bins in each trial. The CCG 

is normalized by (1) a triangle function ( ) T    , where T is the trial duration and 

is time lag; and (2)  the geometric mean firing rate of the two neurons (λ1 and λ2). To 

correct for stimulus-locked correlations, we subtracted the shuffle corrected CCG from 

the raw CCG. To isolate brief timescale correlation (synchrony), we subtracted from the 

raw CCG a predictor calculated from surrogate data in which spike times were jittered in 

a 10 ms window (Harrison and Geman, 2009; Smith and Kohn, 2008). This predictor 

corrects for both stimulus-locked correlations and slow cofluctuations of responsivity 

(those occurring over epochs larger than the jitter window). Both calculations were 

normalized so that the units of the CCG were in coincidences/spike. We defined the 

strength of synchrony to be the area under the jitter-corrected CCG from time lags of -1 

ms to 1 ms. For V1-V2 pairs, we defined the peak in the CCG to be most effective if the 
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sharp peak amplitude of the jitter-corrected CCG is larger than 5 fold of standard 

deviation at plus/minus 75-125 ms of the sharp peak.  

 

Because large stimuli recruit surround suppression (Angelucci and Bressloff, 2006), the 

firing rate for large gratings was on average 51% of that for small gratings. Although 

each of the metrics we include a normalization factor for rate, we wished to be sure that 

issues of signal to noise at low rates would not affect our results. To control for trivial 

confounds due to differences in rate, we applied subsampling methods to rate-match 

responses from small grating with those evoked by large gratings. For experiments with 6 

different sizes randomized in time, we matched to the lowest number of spikes across all 

stimulus conditions, whereas for experiments with more repetitions and two size 

conditions without randomized conditions, we down-sample the firing rate according to 

the average proportion of firing rate between large and small conditions. When 

comparing probability of V2 spike following each V1 spike for different gamma phases, 

we matched the number of spikes to the lowest firing rate bin among all phases for each 

trial and stimulus condition. For calculations that involved normalization by firing rate 

(SFC, SSC, and CCG), results were similar between rate-matched and raw data.  

 

All indications of variance are standard errors of the mean, unless otherwise indicated. 

All tests of statistical significance are two-tailed t-tests, unless otherwise indicated. 
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4.4 Results 

The relationship between spike timing and gamma components of the LFP 

We used 10×10 multielectrode arrays implanted in the upper layers of primary visual 

cortex (V1), to record spiking activity and local field potentials (LFPs) simultaneously. 

Visual fields of the recorded units were 2-4° from the fovea, in the lower visual field. We 

collected data from 9 hemispheres of 7 anesthetized macaque monkeys. 

 

Stimulus size has been shown to alter both gamma power and its peak frequency 

(Gieselmann and Thiele, 2008; Jia et al., 2011; Ray and Maunsell, 2011a), making it a 

potentially useful manipulation for investigating the relationship between spike timing 

and gamma. We therefore measured responses to full contrast drifting gratings ranging in 

size from 1-10 degrees. We analyzed responses only from those electrodes driven by the 

smallest grating, so that a common set of neurons could be compared across conditions. 

We averaged responses across all stimulus orientations (8 orientations, each drifting in 

one of 2 directions) and all sites, regardless of orientation preference. 

 

Consistent with previous studies, we found gamma power (30-50 Hz) was enhanced and 

its peak frequency reduced for larger stimuli (Figure 4.1A, n=236 sites). Stimuli 1 degree 

in diameter (black line) induced little gamma power. Two degree stimuli (green) induced 

a weak gamma "bump" (Jia et al., 2011; Ray and Maunsell, 2011a) with a peak frequency 

of 43 Hz. For 10 degree stimuli, the peak frequency shifted to 37 Hz and gamma power 

increased 2-fold, compared to that induced by the smallest stimulus.  
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To test whether enhanced gamma power was reflected in a tighter relationship between 

spike timing in individual neurons and the gamma rhythm, we calculated the spike-field 

coherence (SFC) for each stimulus size (Figure 4.1B). The value of SFC reflects both 

amplitude covariation and the consistency of the relative phase of the two signals. We 

used the LFP recorded at electrodes adjacent to the one measuring spiking activity, to 

preclude direct spectral contamination of LFPs by spike waveforms (Ray and Maunsell, 

2011a; Zanos et al., 2011).  

 

Gamma-band SFC was 36% higher for activity driven by large (10 degree) gratings 

compared to small (1 degree gratings; 0.091±0.002 vs. 0.067±0.001; p<0.0001). Note that 

this was not the case for slightly higher frequency bands (e.g. 80-100 Hz). Like gamma, 

power in this frequency range was modulated by stimulus size (Figure 1A) but this was 

not paralleled by a change in SFC. In addition to an increase in gamma SFC, we observed 

a decrease in gamma peak frequency for larger stimuli, from 54 to 36Hz. Across sites, the 

correlation between the gamma-band peak frequency of SFC and power for stimuli of 

different sizes was 0.89±0.04, (n=236 sites). Thus, when gamma power is elevated, there 

is an enhanced relationship between gamma components of the LFP and gamma-band 

spiking activity.  

 

To determine the spatial extent of elevated gamma-band SFC, we compared spikes and 

LFPs recorded by sites separated by a range of distances (n=10,212 pairings). Coherence 

was elevated across several millimeters for activity driven by 10 degree but not 1 degree 

gratings (Figure 4.1C). Note that we only considered a common set of sites for both 
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conditions--those for which the smallest stimulus covered a significant portion of the 

receptive field (see Methods)--so the difference in coherence does not reflect a trivial 

difference in the extent of activated cortex. For the larger grating, gamma coherence 

decayed from 0.091±0.003 for sites separated by 400 microns to 0.071±0.001 for sites 

separated by 3.2 mm, a trend that was well described as an exponential decay with a 

space constant of 2.8 mm. The spatially extensive gamma SFC is consistent with the 

long-range LFP-LFP coherence in the gamma band, for signals induced by large drifting 

gratings (Jia et al., 2011; Juergens et al., 1999). 

 

To test how enhanced SFC was reflected in the gamma-modulation of spike timing, we 

measured the distribution of spikes within a gamma cycle. We bandpass filtered the raw 

LFP to isolate its gamma components and then applied the Hilbert transform to estimate 

the phase of this composite signal at each instant (Figure 4.2A; (Colgin et al., 2009; 

Galindo-Leon et al., 2009; Montemurro et al., 2008; Rajkai et al., 2008; Rubino et al., 

2006); see Methods). The distribution of spikes evoked by a 10 degree grating, with 

respect to gamma phase, is shown for one neuron in Figure 4.2B. This cell had a slightly 

higher tendency to fire at a phase near 180 degrees, corresponding to the trough of the 

gamma rhythm.  

 

To quantify effects across cells, we determined the preferred gamma phase and the phase 

bias for each neuron (see Methods). For the example neuron (Figure 4.2B), the preferred 

phase was 156 degrees (arrowhead) with a bias of 0.46, where a value of 0 indicates no 

phase modulation and 1 indicates perfect locking given the noisiness in spike timing. 
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Figure 4.2C shows the distribution of preferred phases for all neurons in one implant. 

Neurons had a tendency to fire at the trough of the gamma cycle when activity was driven 

by 10 degree gratings (red), but this was not evident for responses to 1 degree stimuli 

(gray). Correspondingly, the mean bias in this implant was 0.37±0.02 for activity driven 

by large gratings, compared to 0.24±0.03 for small ones (n=31 sites), a statistically 

significant difference (p=0.0003). Across implants, the bias observed for responses to 

large gratings (0.33±0.01) was significantly greater than small (0.25±0.01; n=236; 

p<0.0001). Consistent with this analysis, a test of the strength of modulation at individual 

sites showed that 25.4% of sites were significantly modulated when activity was driven 

by small gratings (Rayleigh test, significance level=0.05; n=236 sites), whereas for 

activity driven by large gratings 54.2% of sites were significantly modulated. 

 

Our analysis shows that the clustering of spike times in the gamma cycle is more evident 

when gamma power in the LFP is more prominent. When driven by large gratings, spikes 

from individual neurons are more temporally coordinated and have a tendency to cluster 

at the same gamma phase. We next evaluated how this affected the strength of pairwise 

and higher-order spiking synchrony in the population. 

 

Influence of gamma on neuronal synchrony in V1 

Since individual neurons tend to fire at the same phase of the coherent gamma rhythm, 

the probability that these neurons fire synchronously should be elevated when gamma 

power is enhanced. We therefore compared the temporal coordination of spiking activity 

in a neuronal population driven by small and large gratings. Because accurate estimation 
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of spike timing correlation requires a large number of spikes, we measured responses to 

many presentations (300-400) of stimuli of two sizes: 10 degree gratings and ones 2-3.5 

degrees in size. The smaller size was chosen to cover all of the spatial receptive fields, 

but induced a clearly weaker gamma rhythm than the larger stimulus (Figure 4.1A). As in 

our previous analysis, we rate matched the responses across conditions for all cells.  

 

To measure pairwise spike timing correlation, we calculated cross-correlograms (CCGs) 

between all neuron pairings. The average shuffle-corrected CCG had a larger peak at 0 

ms time-lag for activity evoked by large (Figure 4.3A; red line; n=24,167 pairs) 

compared to small gratings (black line; n=24,261 pairs). The CCG for the former 

condition also showed clear oscillatory side lobes, indicating rhythmicity in the 

coordinated firing. This was reflected in the power spectrum of the CCG: gamma power 

increased 45 fold, with a shift in peak frequency to 48 Hz for 39 Hz for activity driven by 

large gratings (Figure 4.3B). Gamma band spike-spike coherence (SSC) was also 

significantly stronger for large gratings than for small, and the peak frequency of SSC in 

the gamma band shifted from 47 Hz to 38 Hz when stimulus size was increased 

(Supplementary Figure 1A). 

 

To isolate synchrony from co-fluctuations over longer time scales, we corrected the raw 

CCG with a predictor derived from jittered data. We chose a jitter winder of 10 ms to 

isolate fine-time scale synchrony (see Methods). This correction removes all correlations 

arising on timescales larger than the jitter window (Harrison and Geman, 2009; Smith 

and Kohn, 2008). Synchrony, measured as the area of the jitter-corrected CCG peak (±1 
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ms of 0 ms time lag), was 3.4 fold larger for large gratings than small ones (4.24±0.2E-4 

vs. 1.23±0.04E-4, p<0.0001; Figure 4.3C). The stronger pairwise synchrony in the 

population arose from greater coordination between both nearby and more distant pairs 

(Figure 4.3D). Although the increase in synchrony was substantial, its magnitude 

remained small, meaning that synchronous events remained rare even when gamma 

power was elevated.  

 

To extend our analysis beyond pairwise synchrony, we calculated the frequency of 

higher-order synchronous events: that is, events consisting of 3-7 neurons firing within 1 

ms of each other. For activity driven by large gratings, there were more events consisting 

of several cells firing synchronously (Figure 4.3E), and fewer of events consisting of only 

one or two simultaneously active neurons, compared to responses driven by small 

gratings (Figure 4.3F, n=990,000 1 ms epochs). Note that events consisting of two 

neurons firing together (which become less frequent when stimulus size is increased) are 

not equivalent to measures of pairwise synchrony: the former is defined as only two cells 

in the recorded population firing (all others silent), whereas measures of pairwise 

synchrony do not consider activity in a broader population.   

 

In complementary analysis, we found that higher-order synchronous events tended to 

occur at a more consistent phase of the gamma rhythm than lower-order ones. This was 

evident by greater gamma power in the event-triggered average of the LFP when events 

consisted of more co-active neurons (Supplementary Figure 2). 
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In conclusion, the gamma phase modulation of spike timing in individual neurons is 

associated with enhanced pairwise and higher-order synchrony. Increasing stimulus size, 

which results in more gamma power in the LFP and a shift in peak frequencies in the 

gamma range to lower frequencies, can enhance spiking synchrony with modulation at 

corresponding gamma frequencies. 

 

Coupling of V1 and V2 spiking activity 

A central tenet of the proposal that gamma influences corticocortical communication is 

that the temporal coordination of spiking activity in a neuronal population should result 

in stronger drive to downstream neurons (Akam and Kullmann, 2010; Knoblich et al., 

2010; Salinas and Sejnowski, 2000, 2001). To determine how the coordination of V1 

spiking activity affects its coupling with downstream networks, we paired our V1 

recordings with simultaneous measurement of activity in V2 using arrays of tetrodes and 

electrodes (Figure 4.4A). We performed these experiments in 4 animals with 4 array 

implants in V1 and 7 recording sites in V2, which gives us 528 neurons in V1 and 181 

neurons in V2 in total.  

 

Areas V1 and V2 in the macaque monkey form a clear functional hierarchy (Felleman 

and Van Essen, 1991), with V2 entirely reliant on V1 input for its function: reversible 

cooling of V1 results in the abolition of visually-driven responses in V2 (Girard and 

Bullier, 1989; Schiller and Malpeli, 1977). Cooling of V2, on the other hand, has much 

weaker effects on V1 (Bullier et al., 1996). Corticocortical projections from V1 originate 

in layers 2/3 and 4B; fibers projecting to V2 terminate primarily in layer 4 and deep layer 
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3 (Felleman and Van Essen, 1991; Rockland, 1992; Van Essen et al., 1986). To target 

these sets of neurons, we implanted arrays roughly 600 microns into V1 (never more than 

1 mm, the length of the electrodes) and lowered an array of tetrodes and electrodes to the 

middle layers of V2, at a nominal depth of 800-1200 microns from the layer 6/white 

matter border. We made use of the clear retinotopic organization of these two areas to 

target V2 neurons having spatial receptive fields that were aligned with those in V1 

(Figure 4.4B). This provided groups of neurons that could be expected to be anatomically 

and functionally related.   

 

We determined the effect of changes in population synchrony on corticocortical 

communication by measuring the relationship of V1 spiking activity with that in 

downstream V2 neurons, in pairs whose receptive fields were offset by less than 1 degree 

(center-to-center spacing; see Methods). The population average shuffle-corrected V1-V2 

CCGs had two components (Figure 4.4C): a broad peak several hundred milliseconds 

wide, and a narrow peak. The broad peak indicates a tendency for the firing of the 

neurons to co-fluctuate on a time scale of a few hundred milliseconds (Kohn and Smith, 

2005) whereas the narrow peak indicates tighter coupling of activity. For activity driven 

by large gratings (n=16,786 pairs; red line), the average V1-V2 CCG showed a 

suppressed broad component, an enhanced sharp peak, and an increase in the amplitude 

of the oscillatory side lobes, compared to CCGs calculated from responses to small 

gratings (n=16,128 pairs; black line). Gamma power in the V1-V2 CCG increased 5.9 

fold for the larger stimulus, and gamma peak frequency decreased from 43 to 40 Hz.  
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To isolate the brief timescale component of the CCG, we corrected raw CCGs with a 

predictor using a 10 ms jitter window. The average jitter-corrected CCG showed a 68% 

increase in area for activity driven by large (Figure 4.4D, red trace) compared to small 

gratings (black; 1.4±0.1E-4 vs. 0.85±0.1E-4 coin/spk; p=0.0004). In 2.7% of V1-V2 pairs, 

the jitter-corrected CCG had a significant peak (see Methods), with a mean peak offset of 

2.2±0.1 ms, indicating an increased tendency of the V2 cell to fire after the V1 cell with 

this delay. This is consistent with the conduction and synaptic delays for signals between 

these areas (Girard et al., 2001). In pairs for which the sharp peak was significant, we 

observed a 67% enhancement in area (p=0.04; Supplementary Figure 3).  

 

To determine the specificity of the enhanced coupling between V1 and V2 spiking 

activity, we measured how the change in V1-V2 CCG depended on the RF separation 

between V1 and V2 recording sites. The amplitudes of the narrow and broad CCG peaks 

were larger at more overlapping locations, for both small and large grating conditions 

(Figure 4.4E-F). Subtracting the CCGs for activity driven by small gratings from those 

for large gratings revealed a suppression of the broad peak (blue colors in Figure 4.4G), 

facilitation of short timescale correlation (orange and yellow colors in Figures 4.4G), and 

stronger gamma-band side lobes in the CCG. Importantly, the modulation of V1-V2 

CCGs by stimulus size was most apparent for sites separated by less than 1 degree, 

indicating that the effect was spatially specific. For pairs with RF offset of greater than 1 

degree, sharp CCG peaks were infrequent, even when driven by large gratings.   

 

Relationship between V1 and V2 gamma rhythm and their role in modulating coupling 
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The stronger V1-V2 coupling for spiking responses that are strongly gamma-modulated 

could arise from two distinct mechanisms. First, it could be that brief timescale V1-V2 

spiking correlation is enhanced because each V1 spike is more likely to be accompanied 

by synchronous spikes in the presynaptic population (Figure 4.3). This would result in a 

higher probability that a V2 cell integrating these inputs would fire, causing a larger peak 

in the V1-V2 CCG at short time lags. A second possibility is that the V1-V2 coupling is 

enhanced because of modulation by the V2 gamma rhythm if V1 input arrives at a V2 

gamma phase which is most advantageous for triggering a spike (e.g. when local 

inhibition within V2 is minimal) (Atallah and Scanziani, 2009; Cardin et al., 2009; Fries 

et al., 2007; Hasenstaub et al., 2005). We therefore aimed to determine whether V1 and 

V2 gamma rhythms were coordinated, and if so, how this played a role in the enhanced 

coupling of V1 and V2 spiking activity.  

 

We first measured the coherence between V1 and V2 LFPs, as a function of the 

separation between the V1 and V2 spatial RFs of neurons recorded at each site (Figure 

5A). Coherence was stronger between sites representing similar visual locations, and 

stronger in the gamma frequencies for large gratings which induce more gamma power 

both in V1 (Figure 4.1) and V2 (Supplementary Figure 4A). Gamma band coherence 

between sites with receptive fields separated by less than 1 degree was 0.424±0.002 for 

activity driven by large gratings, compared to 0.377±0.001 for small gratings (p<0.0001; 

n=2,197 pairs of sites, matched for small gratings; Figure 4.5B). This change in field 

potential coherence with stimulus size is accompanied by a change in the gamma band 

V1 spike-V2 LFP coherence (Supplementary Figure 1B). 



174 
 

 

We then used coherence analysis to measure the relative phase difference between V1 

and V2 gamma rhythms. For activity induced by large gratings, the phase difference was 

88.0±0.3 degrees (Figure 4.6A; n=2,213 pairs of sites). This is significantly higher than 

the relative phase of gamma rhythms recorded within each cortical area from the same 

sites, which had an average offset of 36.9±0.1 degrees for V1 sites (Figure 4.6B: 

n=17,167 pairs of sites; Bootstrap, p<0.0001 for difference with V1-V2 phase 

distribution) and 46.2±3.2 degrees for V2 sites (Figure 4.6C: n=65 pairs of sites; 

p<0.0001). Thus, there is a relationship between the gamma rhythms in V1-V2. This 

relationship is strengthened when gamma power is elevated, and there is a phase delay of 

roughly 90 degrees or ~6 ms between the two rhythms (corresponding to a gamma cycle 

of 4-8.3 ms or 30-50 Hz). Note that this temporal delay is higher than the peak offset in 

the V1-V2 CCGs which indicates a delay of ~2.5 ms between V1 spiking activity and 

that in V2. 

 

Having found a relationship between the V1 and V2 gamma rhythms, we next determined 

whether the observed change in V1-V2 coupling was due to those inputs arriving at an 

optimal phase of V2 gamma, or whether changes in presynaptic coordination of spike 

timing were primarily responsible. We used responses to large gratings (when gamma 

was most prominent) and determined the phase of spikes relative to the gamma cycle by 

Hilbert transform of gamma band-limited signals (as in Figure 4.2). We defined the 

preferred V1 gamma phase for each cell as that at which the probability of V1 spikes was 

maximal (Figure 4.7B). We then normalized the distributions to unit area and averaged 
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across all cells. Consistent with the single cell analysis shown in Figure 4.2, V1 spiking 

activity was gamma modulated (ANOVA1 F=284.78 p=0). For each phase and V1-V2 

pairing (n=17,518 pairs), we then calculated the proportion of V1 spikes that were 

followed by a spike in V2 1-3 ms later, a delay that reflects the offset of the narrow V1-

V2 CCG peak offset. The proportion was significantly modulated by gamma (ANOVA1 

F=3.81, p=3.8E−4) and highest at the gamma phase at which V1 spiking was maximal 

(Figure 4.7C), consistent with enhanced V1-V2 coupling arising from the temporal 

coordination of V1 spiking.   

 

To test the influence of the V2 gamma rhythm, we determined the V2 preferred gamma 

phase, defined as the phase at which V2 cells were most likely to fire. V2 firing was less 

strongly gamma-modulated than in V1 (Figure 4.7D), but the modulation was significant 

(ANOVA1, F=8.98, p<0.0001). We then computed the proportion of V1 spikes that were 

followed by a V2 spike, based on their timing with respect to V2 gamma phase (Figure 

4.7F). Modulation was notably weaker and not significant (ANOVA1 F=1.14, p=0.34), 

although there was a tendency for coupling to be slightly higher at phases 45-135 degrees 

offset from that at which V2 cells were most likely to fire. This is similar to the phase 

offset between V1 and V2 gamma determined by coherence analysis (Figure 4.6). This 

suggests that the coupling of V1-V2 spiking activity follows the V1 rhythm and not the 

V2 gamma rhythm. To confirm this, we calculated the phase distribution of V1 spikes 

with respect to V2 gamma. This revealed a significant modulation of V1 firing 

(ANOVA1 F = 65.16, p<0.0001), that was offset by 90 degrees from the preferred phase 

of V2 spiking (Figure 4.7E). The modulation of V1 firing (Figure 4.7E) was more 
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consistent than the modulation of V2 firing (Figure 4.7D) with the phase-modulation of 

V1-V2 coupling (Figure 4.7F; Pearson correlation r=0.85) than the modulation of V2 

firing (Figure 4.7D; Pearson correlation r=-0.01).  

 

Together our results suggest that a V1 spike is more likely to trigger a spike in V2 when 

the V1 cell fires at the V1 gamma phase at which V1 firing is maximal. This is consistent 

with the enhancement of V1-V2 correlation reflecting the coordination of the V1 

population firing rate. In contrast, V1 spikes were not most likely to be followed by a V2 

spike when they occurred at the V2 gamma phase at which V2 cells were most likely to 

fire. This can be attributed to a roughly 90 degree phase shift between the gamma 

rhythms in these two areas, longer than the delay for spike propagation between these 

networks. Thus, gamma-modulated V1 activity tends to arrive in V2 several milliseconds 

before the optimal V2 gamma phase. 

 

Orientation dependence of the spike-gamma relationship  

In addition to enhancing gamma power, increasing stimulus size suppresses the firing of 

many V1 neurons (Angelucci et al., 2002b; Cavanaugh et al., 2002b; Hubel and Wiesel, 

1965), and effect that may involve an alteration in the balance of cortical excitation and 

inhibition (Haider et al., 2010; Ozeki et al., 2004). Larger stimuli also recruit activity in a 

more spatially distributed network. These effects complicate the interpretation of size-

dependent changes in gamma, spiking activity, and V1-V2 coupling. It is unclear, for 

instance, whether these are associated directly with a change in gamma, or if both gamma 
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and spikes are co-modulated by some external factor (e.g. altered inhibitory tone) 

recruited by large stimuli.  

 

We therefore investigated the relationship of gamma, population synchrony and V1-V2 

coupling by comparing responses to stimuli of different orientations but of a fixed size. 

We have previously shown that the gamma induced by large gratings has a common 

orientation preference across recording sites (Jia et al., 2011): gamma power is up to two-

fold stronger for some stimulus orientations than others (see (Berens et al., 2008) for a 

related result). This is illustrated in Figure 4.8A, which shows the orientation tuning of 

gamma power averaged across sites from the same array. In this example, gratings with 

an orientation of 112.5 degrees (red circle) induced 2.7-fold more power than gratings 

oriented at 45 degrees (gray circle). Firing rates in the neuronal population, however, 

were similar for these two stimuli, 9.17±0.35 for best orientation and 9.31±0.36 for worst 

(n = 957 neurons in V1; ttest2 p=0.7747). The orientation that induced more power also 

led to a more coherent gamma rhythm across electrode sites (Figure 4.8B; top), with a 

smaller range of phase delays (bottom). Across stimulus orientations, gamma power and 

coherence were significantly correlated (r = 0.89±0.02, n =8 implants).  

 

To test whether the orientation-dependent changes in gamma power and coherence were 

associated with altered coordination of V1 spiking activity, we compared jitter-corrected 

V1-V1 CCGs for the stimulus orientations that induced the most and least gamma power 

(Figure 4.8C; n=28,251 pairs). The orientation that generated higher gamma power 
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resulted in nearly two-fold stronger population synchrony (15±1.2E-4 vs. 8.1±0.3E-4; 

p<0.0001).  

 

To investigate the consequences for corticocortical communication, we compared V1 and 

V2 spiking activity for these two stimulus conditions. We first confirmed that the 

orientation that induced the strongest gamma power in V1 also did so in V2 

(Supplementary Figure 4). We then computed jitter-corrected V1-V2 CCGs for the 

stimulus orientations that induced the most and least gamma power. The narrow-peak of 

the V1-V2 CCG showed a 39% enhancement of peak amplitude on average (Figure 4.8D, 

15.2±0.7E-5 vs. 10.9±0.5E-5 coin/spk; p<0.0001, n=11,012 pairs). As with 

manipulations of stimulus size, the change in the V1-V2 CCG with orientation was 

accompanied by a change in the gamma band V1 spike-V2 LFP coherence 

(Supplementary Figure 1C).   

 

It is worth noting that orientation preferences of neurons in V2 do not follow the 

orientation tuning of the global gamma rhythm in V1 (Supplementary Figure 4), even 

though efficacy depends on orientation. This is consistent with the fact that V2 neurons 

also retain surround suppression as V1 neurons, but the probability of individual spikes in 

V1 to drive V2 neuron is higher for large gratings.    

 

We conclude that the relationship among gamma power, V1 population synchrony and 

coupling of V1-V2 spiking activity does not depend on changes in stimulus size. 

Manipulations of stimulus orientation reveal similar effects. 
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4.5 Discussion 

We examined the interaction between the gamma components of the LFP and spike 

timing in a distributed neuronal population, and tested the influence of coordinated 

ensemble activity on corticocortical communication. We found that visual stimuli that 

induce a strong, coherent gamma rhythm in V1 also result in spiking activity that is more 

strongly gamma phase modulated. This is associated with enhanced V1 pairwise and 

higher-order synchrony. More coordinated activity in V1 was associated, in turn, with a 

higher probability that a V1 spike would be followed several milliseconds later by one in 

V2. This effect was retinotopically specific, and reflected more closely the gamma 

rhythm in the upstream (V1) than downstream (V2) area. Changes in gamma power are 

thus correlated with changes in spike timing of a neuronal population and that this can 

affect coupling between cortical areas.  

 

Mechanisms of gamma generation 

Two models have been proposed to explain the generation of gamma (see reviews by 

(Bartos et al., 2007; Tiesinga and Sejnowski, 2009; Whittington et al., 2011)) . The 

interneuron gamma (ING) model proposes that a network of inhibitory neurons 

synchronizes with external activation. This leads to gamma band synchronization of 

excitatory neurons because of the influence of rhythmic inhibition. The pyramidal-

interneuron gamma (PING) model requires recurrent connections between inhibitory 

interneurons and excitatory neurons to generate gamma. In this model, excitatory neurons 

activate inhibitory neurons, which provide feedback to the excitatory neurons and 

coordinate their firing. We note that in these models, and our results, it is difficult to 
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determine whether stronger gamma leads to a tighter coordination of activity or whether 

stronger rhythmic firing of inhibitory and/or excitatory cells leads to stronger gamma. In 

this sense, gamma is best viewed as a marker of coordination, not a cause. 

 

Although there are differences between these models, both involve rhythmic inhibitory 

network activity that can modulate spike timing. Either model could thus explain the 

relationship we observe between gamma power and spike timing. Because the 

modulation of V1 spike timing only occurs with strong and spatially coherent gamma, the 

relevant signal is presumably the aggregated activity of a distributed pool of inhibitory 

neurons. Both models also suggest that inhibitory and excitatory neurons fire at different 

phases of the gamma cycle. In our recordings, we did not distinguish between these cell 

types, which might underestimate the strength of gamma modulation in either population. 

However, the timing of inhibition and excitation is only offset by a fraction of a gamma 

cycle (Atallah and Scanziani, 2009; Hasenstaub et al., 2005), so pooling responses from 

excitatory and inhibitory cells should not strongly distort our measurements.  

 

Gamma and neuronal synchrony 

Numerous studies have investigated gamma-band modulation of spike timing in visual 

cortex (see (Gray, 1999; Singer, 1999) for review). In early work, measurements of 

gamma-modulation in single neurons provided mixed results, with some groups reporting 

that such modulation was common (Engel et al., 1991a; Friedman-Hill et al., 2000; 

Ghose and Freeman, 1992; Gray et al., 1990; Gray et al., 1989; Gray and Viana Di Prisco, 

1997; Livingstone, 1996; Samonds and Bonds, 2005); whereas others found it was rare 
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(Tovee and Rolls, 1992; Young et al., 1992) or that it was due to burst firing (Bair et al., 

1994). In studies of pairwise spike timing correlation, some studies reported gamma 

fluctuations in CCGs of pairs recorded in the same cortical area (Gray et al., 1989; 

Herculano-Houzel et al., 1999; Lima et al., 2010; Livingstone, 1996; Maldonado et al., 

2000) whereas others did not (Bair et al., 2001; Kohn and Smith, 2005; Smith and Kohn, 

2008).  

 

Gamma fluctuations in neuronal responses can be difficult to detect because they vary in 

frequency and are not stimulus-locked (see Friedman-Hill et al., 2000 for discussion). 

Gamma power in the LFP, which reflects activity in an ensemble, has been suggested as 

an alternative and more sensitive measure (Gray and Singer, 1989). Gamma LFP power 

is sensitive to stimulus features such as contrast (Henrie and Shapley, 2005; Ray and 

Maunsell, 2010), size (Gieselmann and Thiele, 2008; Jia et al., 2011), masking noise (Jia 

et al., 2011) and orientation (Berens et al., 2008; Frien et al., 2000; Gray and Singer, 

1989; Jia et al., 2011). Gamma LFP power is also elevated during cognitive events such 

as the allocation of attention (Fries et al., 2008) or working memory (Pesaran et al., 2002). 

Because gamma LFP power is a sensitive marker for such diverse manipulations, 

understanding its relationship to spike timing is critical.  

 

Previous attempts to relate enhanced LFP gamma power to changes in spiking activity 

has relied primarily on measuring the LFP-spiking relationship, using either spike-

triggered averaging of LFPs (Fries et al., 2001; Gregoriou et al., 2009), SFC (Fries et al., 

2008; Gregoriou et al., 2009; Womelsdorf et al., 2006), or the gamma-phase modulation 
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of spiking activity in individual neurons (Colgin et al., 2009; Gregoriou et al., 2009). This 

has shown that enhanced gamma LFP power is paralleled by an increase in spike-field 

coupling in the gamma frequencies and gamma modulation of single neuron spike trains, 

consistent with our Figures 4.1 and 4.2. Few studies have attempted to relate these 

observations to changes in spike timing among pairs or larger populations of neurons. 

Enhanced gamma LFP power is correlated with greater spike-spike coherence (SSC) in 

the gamma frequencies (Fries et al., 2008; Lima et al., 2010; Womelsdorf et al., 2007). ), 

but because gamma represents a small fraction of LFP power (Jia et al., 2011) the 

functional relevance of these effects is unclear. Indeed, Fries et al. (2008) showed that 

enhanced gamma SFC and SSC was not evident in measures of pairwise spike timing 

correlation (CCGs). Samonds and Bonds (2005) showed that gamma-modulation of 

single V1 neuron spiking activity was only weakly correlated with the strength of 

pairwise synchrony. 

 

Our study focused, in part, on elucidating the relationship between gamma power of the 

LFP and population synchrony. We found that stimulus manipulations that led to elevated 

gamma LFP power also caused enhanced pairwise and higher-order synchrony. Further, 

the peak frequency of gamma-modulated spiking activity (evident in both SFC and CCG 

measures) shifted toward lower frequencies as stimulus size increased, in parallel with a 

similar shift in LFP peak gamma power.  

 

The differences in gamma-modulation of spiking activity across stimulus conditions 

cannot be easily ascribed to differences in spike rate. Our metrics of coordination include 
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normalization for firing rate. More importantly, we equated firing rates across conditions 

to be sure there could be no statistical issues based on different number of spikes 

available for different stimuli. This procedure does not correct for differences in the 

underlying excitability of neurons in different conditions. However, for manipulations of 

stimulus size, we found the strongest correlation when rates were lowest, precisely when 

correlations are most likely to be underestimated (Cohen and Kohn, 2011). Further, we 

used a second stimulus manipulations to modulate gamma power, making use of the 

shared orientation tuning of the gamma rhythm recorded at different sites (Jia et al., 

2011). We found that manipulating gamma strength and spatial coherence by changing 

stimulus orientation, for stimuli of a fixed size, also altered the coordination of V1 

spiking activity and V1-V2 coupling. In this case, we observed no difference in 

population firing rate between the orientation that gave the strongest and weakest 

responses. There remains the possibility that firing in a broader pool of neurons was 

different for these two conditions (Jia et al., 2011). If this is the case, it would only 

strengthen our argument, as it would indicate stronger gamma modulation both for 

stimulus manipulations that lower rates (large gratings) and increase them (gamma-

preferred orientation). 

 

There are several possible reasons that we observed clearer gamma modulation of 

population synchrony than previous studies. First, using array recordings in the 

anesthetized animal provided us with a large number of pairings (and the ability to look 

at higher-order events). Whereas previous studies relied on, at most, a few hundred pairs, 

we investigated effects in roughly 20,000 pairs. Prolonged recording periods in the 
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anesthetized animal allowed us to record a large number of spikes, needed to measure 

accurately the strength of weak pairwise synchrony. In addition, the change in gamma 

LFP power we induced with our stimulus manipulations was much greater than that 

caused, for instance, by the allocation of attention (2-fold vs 20% in Fries et al. (2008)). 

The effects we observed were also associated with a gamma rhythm that was coherent 

across millimeters of cortex, so that it involved a broad population of cells. Small 

variations in the spatial similarity of a visual stimulus can disrupt gamma LFP coherence 

(Gail et al., 2000; Jia et al., 2011; Lima et al., 2010; Ray and Maunsell, 2010) and 

gamma-band neuronal synchrony (Gray et al., 1989; Lima et al., 2010; Zhou et al., 2008). 

Thus, naturalistic input which includes occlusions and image fragments is unlikely to 

generate the sort of strong, spatially coherent gamma rhythm we induce with large 

grating stimuli. The change in coordinated spiking activity we observed thus likely 

represents an upper bound on the physiological range over which gamma fluctuates in 

vivo.  

 

Corticocortical coupling 

Previous studies have found that gamma rhythms can become coherent between different 

cortical areas (Buschman and Miller, 2007; Gregoriou et al., 2009; Womelsdorf et al., 

2007), subcortical networks (Montgomery and Buzsaki, 2007; Popescu et al., 2009), 

corticospinal networks (Schoffelen et al., 2005a), and hippocampal networks (Bragin et 

al., 1995; Colgin et al., 2009; Csicsvari et al., 2003). When this is the case, the spiking 

activity in one area can be coherent with the gamma components of the LFP recorded in 

another (Colgin et al., 2009; Gregoriou et al., 2009). These observations have been taken 
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as evidence that when gamma LFP power is elevated, this enhances communication 

efficiency between neuronal groups, perhaps serving as a dynamic mechanism for routing 

information between networks (Fries et al., 2007; Womelsdorf and Fries, 2006). As 

discussed above for intra-areal measurements, these observations are indicative of 

functional coupling. However, since gamma power is weak, how enhanced interareal 

gamma spike-field coupling translates into coordinated spiking activity has remained 

unclear. 

 

Our study tackled this question by correlating spiking activity between V1 and V2, and 

measuring this coupling for stimulus manipulations that modulate gamma power. We find 

that when gamma power is elevated (large vs. small gratings or gamma-preferred 

orientation vs. the orthogonal) there is enhanced spike-spike correlation for subsets of 

neurons with retinotopically aligned spatial RFs (Figure 4). This relationship is also 

apparent in the gamma frequency range of field-field coherence and SFC (Figure 4.5; 

Supplementary Figure 1).  

 

Our study is not the first to measure correlated spiking activity between cortical areas. 

For instance, correlated oscillatory firing between the retina, LGN and cortical areas 17 

and 18 has been reported (Castelo-Branco et al., 1998; Neuenschwander and Singer, 

1996), but some of this coordinated firing was in frequencies much higher than gamma 

and it was not retinotopically-specific. Engel et al. (1991) performed cross-correlation 

analysis between neurons in areas 17 and posteromedial lateral suprasylvian (PMLS) of 

the cat, and showed that these areas could display synchronous rhythmic activity in a 
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retinotopically specific manner. Curiously, the phase in area 17 lagged that in PMLS by 2 

ms, although PMLS is a prestriate area that receives feedforward input from area 17 

(Engel et al., 1991b).  

 

In addition to quantifying effects using a much more extensive data set, our results extend 

these observations in several important ways. First, we link the inter-areal spiking 

relationship to changes in LFP power and peak frequency. Second, we record from 

specific networks whose connectivity is well-defined, and observed interactions in spike 

timing consistent with the propagation delays between these two networks (V1 leading 

V2 by roughly 2.5 ms). This interaction was also observed when gamma power was 

negligible (activity driven by small gratings) and thus does not require gamma 

coordination. Rather, gamma modulation appears to enhance an existing functional 

interaction. Finally, we investigated the relative influence of the V1 and V2 gamma 

rhythms on functional coupling.  

 

The enhanced coupling of V1-V2 spiking activity could arise from the coordination of 

V1 population spiking activity, providing downstream networks with more synchronous 

input, or from timing excitatory inputs to arrive out of phase with local rhythmic gamma 

fluctuations in inhibition (Gregoriou et al., 2009; Schoffelen et al., 2005b; Womelsdorf et 

al., 2007). We therefore compared the probability that a V1 spike would be followed by 

one in V2, based on timing relative to the V1 and V2 gamma cycle. Comparing 

measurements across areas using separate recording systems can introduce distinct phase 

delays in the LFP (Nelson et al., 2008), so we used the local spiking activity to establish 
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the "preferred" gamma phase in each area. We found that coupling follows the V1 

gamma rhythm more closely than the V2 rhythm. This implies that the temporal 

coordination of synaptic inputs is more relevant to modulate the strength of interareal 

coupling than the regulation of local inhibition. Consistent with this, the gamma rhythms 

in V1 and V2 are delayed by roughly 90 degrees (~5-8.3 ms for a 30-50 Hz signal). Since 

the delay in correlated spiking activity in these two networks is only 2 ms, inputs do not 

arrive at the optimal gamma phase. This additional delay likely reflects the recruitment of 

local V2 circuits that generate gamma in that area. Timing inputs to arrive at a non-

optimal phase of the local rhythm may be necessary to prevent an accumulation of 

synchrony as signals are passed sequentially through feedforward networks (Reyes, 

2003).  

 

Our results differ from those of Gregoriou et al. (2009) who found a phase difference 

between the gamma rhythms in frontal eye field and area V4, corresponding to a 

temporal difference of about 8 to 13 ms (Gregoriou et al., 2009). The delay between FEF 

and V4 has been attributed to conduction delays (Gregoriou et al., 2009), but the 

coordination of spiking activity in these two areas was not measured. Further work will 

be needed to distinguish definitively the relative influence of these two mechanisms, for 

instance by comparing coupling between a single presynaptic network and two 

downstream ones, with different gamma signals. 

 

Limitations of gamma 
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Our findings provide evidence that enhanced gamma power is associated with changes in 

the coordination of spiking activity in a neuronal ensemble, both within a cortical areas 

and between distinct networks. Whether this indicates that gamma plays an important 

functional role in sensory processing remains unclear. First, when gamma power is 

strongest, the rhythm is coherent across millimeters of cortex (Jia et al., 2011). Thus, 

when it is strongest, gamma lacks the spatial and functional specificity needed to select 

specific subgroups of neurons to be bound or to be preferentially routed to downstream 

targets. Second, the dynamics of gamma are relatively slow (Burns et al., 2010a; Jia et al., 

2011; Kruse and Eckhorn, 1996), rising slowly after stimulus onset and peaking 200-300 

ms later. Because the input to the visual system changes frequently, with each saccade, 

the slow onset of gamma may limit its functional role. Third, as discussed previously, 

gamma power is easily disrupted by occlusions or masking of visual input. Finally, while 

our results indicate fairly strong (2-fold) changes in temporal correlation of spiking 

activity, this correlation remains quite weak. Roughly 1-3 out of 1000 V1 spikes is 

synchronized with an event in another cell. The importance of modulating this weak 

synchrony, relative to potentially much stronger fluctuations in rate (100-fold), remains 

to be established. These limitations of gamma must also be taken into account when 

evaluating whether it plays an important functional role in cortical processing. 

 

Summary 

Our study extends our understanding of the relationship between gamma LFP power and 

spiking activity in several ways. First, we studied gamma in networks driven with visual 

input which manipulated the strength and spatial coherence of gamma over a broad range. 
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Second, we tested the relationship between gamma and spike timing in a spatially 

extensive network, allowing us to reveal the influence of gamma across the cortical 

surface and to characterize effects at the level of single neuron firing and pairwise and 

higher order synchrony. Finally, we measured the consequence of altered ensemble 

activity on relationship of V1 inputs and responses in a downstream network in the 

middle layers of V2. Together our findings show that the strongly elevated gamma is 

associated with altered temporal coordination of spiking activity in a distributed 

population and that this alters the coupling between cortical networks. 
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4.6 Figure legends: 

 

Figure 4.1 Effects of stimulus size on gamma LFP power and spike-field coherence. (A) 

Power spectra of LFP for sites activated by the smallest grating (n=236 sites), with 

different colors indicating responses to grating ranging in diameter from 1 to 10 degrees. 

LFP power was dominated by low frequency (<20 Hz) power; only higher frequency 

components are illustrated for clarity of display. Shading indicates SEM. (B) Average 

spike-field coherence (SFC) of the spikes from each recording site and the LFP from 

neighboring sites (0.4 mm) for different sizes. Shading indicates SEM. Dashed lines 

indicate the coherence calculated after shuffling the trials. (C) SFC (0-140 Hz) as a 

function of inter-electrode distance for 1 degree (left) and 10 degree (right) gratings.  
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Figure 4.2 Gamma phase modulation of spiking activity. (A) Illustration of the method to 

measure the phase of spiking activity relative to the gamma cycle. We band-pass filtered 

the LFP in the gamma range, and then applied the Hilbert transform to this signal to 

estimate spike phase. (B) Spike count distribution within the gamma cycle for an example 

site. The histogram is normalized to unit area. The preferred phase is indicated with a 

black triangle. Activity was driven by a 10 degree grating averaged across orientations. 

(C) The distributions of the preferred phase of individual sites from an example array, for 

activity driven by small (1 deg) and large (10 deg) gratings. (D) Example of the 

distribution of normalized spike counts with respect to the gamma cycle, for all neurons 

in one implant (n=148 neurons). Data for activity driven by large gratings is shown in red; 

for small gratings in black.  
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Figure 4.3 Population neuronal synchrony in V1. (A) Averaged shuffle-corrected CCGs 

for large (red; 10 deg; n=24,167 pairs) and small (black; <3.5 deg; n= 24,261 pairs) 

gratings. Shading, similar in size to the line thickness, indicates SEM. (B) Power spectra 

of the average shuffle-corrected CCGs in (A). (C) Average jitter-corrected (10 ms jitter 

window) CCGs for large and small gratings. Shading indicates SEM. (D) Average jitter-

corrected CCG peak amplitude (+/- 1 ms), as a function of distance between recording 

sites. (E) Rate of occurrence of different multi-neuron spiking events (n = 990,000 time 

epochs). (F) Ratio between the rates shown in (E).  
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Figure 4.4 Relating spiking activity in V1 and V2. (A) Illustration of the experimental 

approach. (B) Centers of the spatial receptive fields (RFs) in V1 (blue) and V2 (red). 

Each dot indicates the RF at a single recording site. The large circles indicate the sizes of 

an exemplar measured V1 and V2 RFs. (C) Average shuffle-corrected V1-V2 CCGs for 

large (red; 10 deg; n=16,367 pairs) and small (black; <3.5 deg; n=16,864 pairs) gratings. 

Shading indicates SEM. (D) Average jitter-corrected CCGs  (jitter window = 10 ms) for 

the same V1-V2 pairings and stimulus conditions. Shading indicates SEM. (E, F) 

Shuffle-corrected (left) and jitter-corrected (right) V1-V2 CCGs as a function of the 

receptive field separation (distance between the RF centers) for small (E) and large (F) 

gratings. (G) For shuffle-corrected (left) and jitter-corrected (right) V1-V2 CCGs, the 

difference between CCGs of responses to large and small gratings. 
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Figure 4.5 Coherence between V1 and V2 LFPs. (A) Coherence as a function of 

frequency and RF separation between the V1 and V2 recording sites for responses to 

small (left; n=3,793 pairs) and large (right; n=3,814 pairs) gratings. (B) Averaged 

coherence as a function of frequency, for sites for which RFs were separated by less than 

1 degree. Coherence for responses to large gratings are shown in red; for small, in black.  
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Figure 4.6 Relative phase difference in the gamma frequency within and between 

cortical regions with large gratings. (A) Relative phase difference between V1 and V2 

gamma rhythms for sites for which RFs were separated by less than 1 degree (n=2213 

pairs; bin size =22.5 deg). Mean of phase distribution is 87.9 degree. (B) Phase difference 

in the gamma frequency between pairs of V1 recording sites (n = 17167 pairs), for same 

V1 recording sites in (A). Mean of phase distribution is 36.9 degree. (C) Phase difference 

in the gamma frequency between pairs of V2 recording sites (n = 65 pairs), for same V2 

recording sites in (A). Mean of phase distribution is 46.2 degree. 
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Figure 4.7 Coupling of V1 and V2 spiking activity, relative to the V1 and V2 gamma 

rhythms. (A) Illustration of method for determining the preferred gamma phase in V1 and 

V2. For the gamma rhythm in each area, we determined the preferred phase (ϕ), defined 

as the phase at which local spiking activity was most likely. (B) V1 spike counts relative 

to the V1 gamma cycle, with the preferred phase plotted as the first bin. Gamma-phase 

modulation was calculated for each cell, as in Figure 2, and then averaged across all 

neurons (n=770 cells).  (C) Proportion of V1 spikes followed by a V2 spike 1-3 ms later, 

for each V1 gamma phase as defined in (B) (n = 17,518 pairs). (D) Normalized V2 spike 

counts relative to the V2 gamma cycle, with the preferred phase aligned to the first phase 

bin (n = 186 cells). (E) Normalized V1 spike counts aligned with respect to the V2 

gamma phase at which V2 firing is most likely. Note that V1 neurons tend to fire at a 

phase offset from that preferred by V2 neurons (F) Proportion of V1 spikes that are 

followed by a V2 spike, with respect to the V2 gamma phase.  
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Figure 4.8 Dependence of gamma LFP power, neuronal synchrony and corticocortical 

coupling on stimulus orientation. (A) Population orientation tuning curve of gamma 

power from one example array (n = 86 sites), for activity induced with large gratings. The 

red dot indicates the best orientation, meaning the orientation that induced the most 

power; the grey dot indicates the worst orientation. (B) Coherence and phase difference 

between LFPs in V1, as a function of interelectrode distance and frequency. (C) 

Averaged jitter-corrected V1-V1 CCGs (n=28,251 pairs) for the best and worst stimulus 

orientations. (D) Averaged jitter-corrected V1-V2 CCGs (n=11,012 pairs) for the best 

and worst stimulus orientations.  
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Supplementary Figure 1 Effects of stimulus size on spike-spike coherence in V1 and 

spike-field coherence between V1 and V2. (A) To measure coordination of spike timing 

in the frequency domain, to complement the CCG analysis in Figure 4.3, we calculated 

the spike-spike coherence (SSC) between all possible pairings of neurons. Gamma SSC 

was stronger for large gratings (0.0346±4E-5, n= 51980) than small gratings 

(0.0333±3.4E-5, n= 53463; p<0.0001), and the peak frequency of SSC in the gamma 

band shifted from 47 Hz to 38 Hz when stimulus size was increased. (B) Given the 

interaction between V1 spike timing and V1 gamma, the gamma coherence of V1-V2 

LFPs implies a relationship between V1 spikes and V2 gamma, when the gamma rhythms 

in these two areas are coherent. We evaluated this by calculating the coherence between 

V1 spiking activity and V2 LFPs. Spike-field coherence was elevated at gamma 

frequencies and higher for responses to large (0.0203±0.0001; n=4374 pairs; red trace) 

compared to small gratings (0.0166±3E-005, n=4680 pairs; p<0.0001; black trace). (C) 

To investigate the interaction between V1 spikes and V2 gamma for large gratings, we 

measured the relationship between V1 spikes and V2 LFPs and spiking activity of 

different orientations. The best orientation, which induces most gamma power, showed 

higher V1 spike-V2 LFP coherence in the gamma band (n=3459 pairs), although both 

conditions induced a clear peak in gamma SFC.   
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Supplementary Figure 2 Event-triggered averages of the global LFP. Our analysis 

shows that clustering of spike times in the gamma cycle is more consistent when gamma 

is more prominent. When driven by large gratings, spikes from individual neurons tend to 

cluster at the same phase. However, to determine how changes in gamma power affect 

the coordination of activity in a neuronal population, one must understand the timing 

relationships among large groups of neurons. We therefore examined the interaction 

between spike firing patterns in the population and the global gamma rhythm, defined as 

the average of the raw LFP signal across all electrodes at each point in time. (A) We 

computed event-triggered averages of the global LFP (ETA-LFP), where an event was 

defined as the number of neurons (regardless of identity) that fired in a 1 ms window. (B) 

Average global LFP triggered by events involving 1-7 neurons, for activity induced in a 

single array by a single grating. The LFPs triggered on 1 neuron events showed little 

structure, but we observed a notable increase in the amplitude of ETA-LFP as the number 

of co-active neurons increased. (C) The power spectrum of the ETA-LFPs was 

dominated by gamma frequencies when triggered by higher order events. (D) The 

average gamma band power in the ETA-LFP, normalized by the maximum gamma power 

for each implant, increased from 0.17±0.06 to 0.98±0.01 (p<0.0001; n=8 implants), for 

events involving 1 neuron compared to those involving 7 neurons. This result suggests 

that for higher-order synchrony to occur, spikes from individual neurons are more aligned 

at the same phase on the global gamma rhythm.  

 

  



1 spike
2 spikes
3 spikes
4 spikes
5 spikes
6 spikes
7 spikes

Event triggered average (ETA)
of global LFP 

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 g
am

m
a 

po
w

er
 o

f
E

TA
 o

f g
lo

ba
l L

FP

A
m

pl
itu

de
 (µ

V
)Neuronal

population

Global
LFP

n = 8 implants

Time (ms)

Number of synchronous neurons

A B

DC

P
ow

er
 (A

.U
.)

Example hemisphere

0 20 40 60 80 100
0

2.5

5

Frequency (Hz)

 

−50 0 50
−30

−20

−10

0

10

20

209



210 
 

Supplementary Figure 3 CCGs of the most correlated V1 and V2 pairs. To evaluate the 

conduction time of the feedforward connections between V1 and V2, we quantified the 

most correlated pairs (sharp peak amplitude large than 5 fold of standard deviation at 

plus/minus 75-125 ms). (A) The resulted pairs showed 67% enhancement of CCG peak 

area for large compared to small. The distribution of the time lag of the sharp peak for 

small gratings (2-3.5 degree) is plotted in (B) and for large gratings (10 degree) is plotted 

in (C), with a mean peak offset of 2.20+/-0.10ms (n=459 pairs; 2.7% of total pairs) for 

small and 2.23+/-0.09ms for large (n=631 pairs; 3.9% of total pairs) and a median of 2 

ms for small and 3 ms for large. 
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Supplementary Figure 4 Response properties of gamma power and neuronal responses 

in V2 compared to V1. (A) Power spectra of V2 LFP for large and small gratings (n=50 

sites). (B) Upper panel shows the distribution of gamma preferred orientation in V1 with 

peak of the distribution centered at 90 degree (n=715 sites). Lower panel shows the 

distribution of orientation preferences of MUA in V1 shifted according to V1 gamma 

distribution. (C) Upper panel is the distribution of V2 gamma preferred orientation 

shifted according to the simultaneously recorded V1 gamma distributions. The preferred 

orientation of V2 gamma is the same as V1 (n = 50 sites). Lower panel shows the 

distribution of orientation preferences of V2 neurons shifted according to V1 gamma 

distribution. Clearly, the preferred orientation of V2 neurons is randomly distributed and 

does not follow the orientation tuning of V1 or V2 gamma rhythm. 
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Chapter 5: Discussion  

 

5.1 Summary  

 

There are extensive observations of correlated changes between different brain rhythms 

and various brain states have been made (Buzsaki, 2006). Understanding the nature of 

brain rhythms and their potential functional roles has been an intriguing research topic in 

past decades. Decoding the message carried in these different rhythms may help us to 

read the brain, with higher spatial and temporal resolution compared to functional 

imaging. 

 

Brain rhythms are slow rhythmic extracellular voltage fluctuations that can be detected 

on the scalp (EEG), underneath the dura (intracranial field potential; IFP) or within the 

brain (LFP). Among these the LFP has the finest spatial resolution. Many studies have 

focused on the gamma rhythm of the LFP, because that power in the low gamma range, 

typically 30 to 50 Hz, is enhanced with sensory drive and during active brain states, like 

attention and working memory. Similar to single neurons in sensory cortex, the gamma 

rhythm of the LFP is also tuned to stimulus properties. Findings on the relationship 

between the gamma rhythm and spike timing and the neuron substrate involved in 

generating gamma rhythm have led to many proposals on the functional role of gamma in 

signal transmission (see Introduction). However, the understanding of the basic properties 

of gamma is still poor, including its relationship to spiking activity and rigorous tests of 

proposals about its potential role in encoding and signaling information are lacking. 
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The main purpose of my thesis work is to elucidate the properties of gamma, its 

relationship to spiking activity, and its putative role in signal transmission in early visual 

cortex. I find that the spatial extent and selectivity of gamma rhythm is not fixed, but 

depends on the properties of the visual stimulus. When a visual stimulus is small, 

discontinuous in space or presented for a short period of time, the tuning of LFP in the 

gamma frequencies is dominated by broadband power, which is predictable from changes 

in higher frequencies of LFP. When a visual stimulus is a large drifting grating presented 

for sufficient time, a strong and spatially extensive gamma rhythm is generated, with a 

tuning preference that is shared across cortical distance. This global gamma rhythm is 

characterized by a spectral bump in the gamma range (Chapter 2). The preference of the 

global gamma rhythm could arise from a small representation bias of the neuronal 

population that generates the rhythm. In Chapter 3, I tested this proposal using adaptation 

and demonstrated that the global gamma rhythm is extremely sensitive to prolonged 

adaptation. This is consistent with the suggestion that the gamma rhythm reflects a 

neuronal bias. Having established the properties of the gamma rhythm, I then investigated 

the interaction between gamma and neuronal spiking activity. I find that when gamma is 

strong and spatially phase coherent, spikes tend to cluster at certain phases of the gamma 

rhythm and become synchronized. These synchronized outputs from V1 influence the 

efficacy of each V1 spike in driving downstream V2 neurons in a gamma-phase 

dependent manner (Chapter 4). These results suggest that strong gamma power with a 

distinctive spectral bump can indicate the formation of a global rhythm, enhanced 
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neuronal synchrony in a large network and increased signal propagation efficacy between 

cortical areas.    

 

5.2 Factors contributing to the spatial resolution of the brain rhythms  

The gamma rhythm is generated by coordinated subthreshold electrical activity of a 

neural ensemble (Jia and Kohn, 2011; Mitzdorf, 1985). It is important to emphasize that 

there are three potential factors contributing to the spatial resolution of the detected 

gamma rhythm. The first one is the structure of the physiological source of the signal. 

Correlated synaptic activity in each neuron is not enough to generate detectable rhythmic 

fluctuations in the extracellular field potential. The morphology of individual neurons, 

geometry of dendrites and axons, and the alignment and density of a neuronal population 

can all affect how effectively the extracellular electrical fields summate (Buzsaki, 2006). 

Only when the electrical fields generated in each neuron are aligned with each other can 

the extracellular electrical field sum to generate a signal that is detectable. For a given 

transmission medium (e.g. brain tissue), the detectable spatial extent of the passive 

conduction of the signal generated from the physiology source is related to its amplitude. 

Therefore, the structure of the neural ensemble can affect the spatial resolution of brain 

rhythms.   

 

The second factor is the extent of neuronal network that generates the stimulus-induced 

gamma rhythm (Traub et al., 1996b; Wang and Buzsaki, 1996). We find that the 

broadband component of gamma rhythm has response properties similar to 

simultaneously recorded spiking activity from the same electrode. This component of 
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gamma could arise from local neural activity. On the contrary, the spatial extent of the 

actively generated gamma rhythm in the LFP is flexible and can reach to more than 4 mm 

around the recording site depending on properties of the visual stimulus. This suggest that 

there is a physiological source involved in the formation of the global rhythm because it 

has highly selective orientation tuning, which is hard to form with the random 

distribution and small spatial scale of the orientation map (Horton and Adams, 2005) if 

the gamma rhythm is passively aggregated from distinctive oscillators from a hundred-

fold larger area. As a result, the spatial extent of the network involved in the global 

gamma rhythm formation contributes to the spatial specificity of the gamma rhythm. 

Unlike the structure of the physiology source, this factor is caused by the functional 

properties of the network and its extent is variable depending on visual input to the 

network. 

 

The last factor is the physical property of brain tissue and of the recording electrodes. For 

example, the spatial resolution of the detected gamma rhythm could be dramatically 

different depending on whether the electrode is inside or outside the brain. However, it is 

important to note that our findings about the flexible extent of the actively generated 

gamma rhythm are physiological properties of the rhythm. They reflect a change in the 

neuronal activity. Even though we have a rough estimation and understanding of the 

flexible spatial extent of the gamma rhythm from the extracellularly recorded LFP, we 

cannot generalize this property to the gamma rhythm detected outside the brain with 

intracranial and EEG recordings, since the resistance, capacitance and volume conduction 

are different, not to mention the impedance and other properties of the sensing electrode. 
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Additionally, the relative location of the recording electrodes to the physiological source 

of the signal could also contribute to the spread of the sensed signal (Kajikawa and 

Schroeder, 2011; Linden et al., 2010). Therefore, although the physiological origin of 

these brain rhythms is the same, the spatial resolutions of rhythms detected with different 

recording methodologies can still different.  

 

5.3 The meaning of changes in the gamma rhythm 

 

5.3.1 Strength of gamma and spiking activity  

The gamma rhythm mainly reflects subthreshold neural activity. Because the firing 

probability in each neuron is closely related to the subthreshold fluctuations of membrane 

potential, the strength of extracellular field potential could be related to the firing rate of 

individual neurons. However, as I have shown in Chapter 2, there are two components 

that contribute to gamma power: one comes from a broadband change in power; the other 

is an actively generated rhythm that can be dissociated from neighboring frequencies and 

can form a spatially extensive rhythm. The relationship between the total gamma power 

in the LFP and spiking activity depends on the relative contribution of these two 

components whose relationships with spiking activity are different.  

 

Similar to power in higher frequencies (Ray and Maunsell, 2011a), the broadband 

component of gamma reflects changes in local neuronal firing rate. The actively 

generated gamma rhythm has a flexible relationship with local neuronal activity. When 

the spatial extent of the network generating this gamma rhythm is limited, its response is 
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more similar to local spiking activity, though not comparable to the broadband 

component (Chapter 2). However, when a spatially extensive network is involved, the 

gamma rhythm does not reflect the neuronal activity recorded at individual recording 

sites. Therefore, the relationship between total gamma power, which is the sum of these 

two components, and the spiking activity recorded at the same recording site depends on 

the relative contribution of the global gamma rhythm and how similar its response is to 

that of the local spiking activity.  

 

Since the neural network that forms the global gamma rhythm is spatially extensive, the 

strength of the stimulus-induced gamma is determined by the total amount of excitation 

that the network receives and how strongly the inhibitory network is driven (Bauer et al., 

1995; Gieselmann and Thiele, 2008). Under conditions when neuronal responses are 

similar across neurons, gamma power and firing rate behave similarly (e.g. with 

allocation of spatial attention (Fries et al., 2008) and manipulations of contrast (Henrie 

and Shapley, 2005)). On the other hand, when the neuronal responses to visual features 

are specific in individual neurons, they dissociate from each other, for example, with 

manipulation of stimulus size which is with respect to the classical receptive field of 

individual neurons (Gieselmann and Thiele, 2008) and orientation tuning comparison 

(Berens et al., 2008; Jia et al., 2011). Therefore, the locally recorded neuronal firing rate 

is often not closely related to the strength of gamma rhythm.  

 

Although the strength of gamma may dissociate from firing rate, spike timing is more 

closely related to the amplitude and phase of the gamma rhythm. This is because when 



220 
 

firing rate is high, the neuronal network is not necessarily coordinated in the gamma 

frequency (Chapter 4). However, when gamma power is high, this suggests that the 

network is strongly synchronized in the gamma frequency, as evident by the observed 

phase-locking of spike timing to the gamma rhythm. As a result, the strength of gamma 

cannot reflect neuronal firing rate, but can be closely related to the firing pattern in 

individual neurons. Furthermore, since the strong gamma rhythm is phase coherent over 

distance, the phase-locking of spike times in individual neurons to a global rhythm 

indicates an enhanced brief timescale synchrony in the network. Therefore, changes in 

power of the actively generated gamma rhythm indicate changes in the temporal 

coordination of spike timing.   

 

According to the independence between the two components of gamma, with one closely 

related to firing rate and the other more closely linked with spike timing, firing rate and 

spike timing relative to gamma cycle could be two independent signals as well (Huxter et 

al., 2003), different from previous proposals that rate and temporal coding are interrelated 

in the hippocampus (Harris et al., 2002; Mehta et al., 2002). Compared to spike timing, 

firing rate averaged over sufficiently long time intervals is more reliable and the 

information coded with firing rate has high signal to noise ratio, reflected in the 

selectivity of tuning curves. On the other hand, the spike timing relative to gamma cycle 

is an immediately available signal but less reliable in the visual cortex (Vinck et al., 

2010). Since reduced firing rate does not mean a reduction in the reliability of spike 

timing, shown by the manipulation of stimulus size, the two signals could code 

independent information.  
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5.3.2 Peak frequency in the gamma range 

Different visual stimulus features can regulate not only the strength of gamma power, but 

also its peak frequency in the gamma range. Since the spectrum of the broadband power 

can never have a peak, the peak frequency is by definition a property of the actively 

generated gamma rhythm. However, the strength of this gamma rhythm is not correlated 

with its peak frequency. For example, large gratings induce a strong gamma rhythm with 

a peak frequency in the lower gamma range, close to 30Hz. Small gratings induce less 

gamma power, with a peak frequency (when it exists) at the upper gamma range (50Hz) 

or even higher (Gieselmann and Thiele, 2008). Masking-noise (Appendix I) and stimulus 

contrast (Ray and Maunsell, 2010), on the other hand, show an opposite relationship 

between gamma strength and peak frequency. Lower contrast or higher level of masking 

noise will reduce the power of the gamma rhythm and also reduce the peak frequency in 

the gamma range. High contrast gratings with little noise will have more power and 

higher peak frequency. These observations suggest that the network mechanisms that 

determine the peak frequency in the gamma range and the strength of gamma rhythm are 

independent.  

 

A modeling study (Brunel and Wang, 2003) has shown that the peak frequency of 

oscillation is critically dependent on the number of excitatory cells in a network, where 

the main oscillatory drive arises from electrically coupled interneurons. When larger 

stimuli excited additional pools of excitatory neurons, the reduction in frequency may 

have arisen from the larger pool of contributing principle cells with longer conduction 
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delays, while the increased oscillatory drive may have arisen from a larger pool of active 

(and coupled) interneurons. 

 

Gieselmann and Thiele proposed that shifts of peak gamma to lower frequencies with 

larger stimuli could arise from longer conduction delays (Gieselmann and Thiele, 2008). 

If peak frequency reflects conduction delays in the network involved in generating the 

gamma rhythm, changes in contrast and noise-masking manipulations would suggest that 

lowering contrast and adding more noise also enlarge the network contributing to the 

actively generated gamma, even for stimuli of fixed size. This seems unlikely. 

 

Recently, another network model has been proposed to explain the peak frequency shifts 

of the gamma rhythm when manipulating stimulus size (Kang et al., 2009). This model 

involves recurrent connections between excitation and inhibition, and a strong influence 

from cortical feedback. Given strong recurrent local inhibition, this model predicts that as 

more feedback is recruited by larger stimuli, the resonant frequency in the gamma range 

will shift lower.  

 

These models suggest that the excitatory drive, conduction delays and feedback might 

play a role in determining peak frequency. Additionally, because lowering contrast can 

enlarge neuronal receptive fields and changes in stimulus size can manipulate the balance 

between excitation and inhibition (Kapadia et al., 1999; Sceniak et al., 1999), the separate 

mechanisms determining gamma power and peak frequency could be used as a window 

to study the properties of underlying neural network.   
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Since neural responses to different sizes, contrasts and levels of noise masking can be 

modeled by changes in the balance between excitation and inhibition, it is an attractive 

idea to speculate that the peak frequency shifts arise from changes in the balance between 

excitation and inhibition in a neuronal network. It has been shown that the balance 

between excitation and inhibition shifts to more proportion of inhibition with larger 

stimuli (Haider et al., 2010). Lowering contrast also has similar effects (Kapadia et al., 

1999; Sceniak et al., 1999). I propose to predict the changing trend of peak frequency 

with various stimulus features by the difference between excitation and inhibition. With 

findings from previous studies, the difference between excitation and inhibition is larger 

for small than large stimuli, and the difference is also larger for high than low contrast. 

Then, the lower the peak frequency of gamma is, the less difference between excitation 

and inhibition. The hypothesized computational model may work only when one chooses 

the proper parameters for excitation and inhibition. Because surround suppression could 

involve feedback from other areas, the model can also include excitatory feedback as in 

previous modeling studies. Therefore, if the strength of gamma power is indicative of the 

total excitatory drive to a network or how strongly the inhibitory network is activated, the 

peak frequency of gamma could potentially reflect the relative balance between 

excitation and inhibition.  

  

Whittington (2010) compared different circuitry models of gamma rhythm formation 

(ING, PING and persistent, introduced in General Introduction) and summarized the 

relationship between gamma power and peak frequency predicted by different models 
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(Whittington et al., 2010). Interestingly, the PING model can predict the changes of 

power and peak frequency with contrast and masking noise, but fails to explain the size 

effects. The other two models fail to predict any of the observed behaviors. Therefore, 

peak frequency changes in the gamma rhythm along with gamma power could impose 

strong constraints on the mechanisms involved in gamma formation. In evaluating the 

performance of a model, one should consider both its ability to predict power and peak 

frequency.  

 

5.4 Orientation selectivity of gamma rhythm 

Gamma, when induced with large drifting gratings, can form a spatially extensive global 

rhythm with stimulus selectivity that is comparable with multi-unit spiking activity. A 

study similar to ours found that the ocular dominance preference is more correlated 

between gamma power and local MUA than orientation tuning (Berens et al., 2008). This 

study thus estimated that the spatial extent of gamma is similar to ocular dominance 

columns, about 450-600 µm.  

 

Berens et al. also found that the orientation selectivity of gamma power is highest when 

MUA and gamma rhythm recorded at the same electrode had a similar orientation 

preference. Because the distribution of the orientation preferences in primary visual 

cortex is not homogeneous, with pinwheels that consists of a wide range of orientations 

and linear zones which can extend up to several hundred micrometers for a single 

orientation (Bonhoeffer and Grinvald, 1991; Horton and Adams, 2005), Berens et al. 

propose that when a recording site is in the middle of a linear zone, it is more likely that 
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gamma will share a similar preference as MUA and that it will be more selective because 

it is summing over a region with similar orientation preference. When the recording site 

is near an orientation pinwheel, on the other hand, the signal reflects activity in a region 

with diverse tuning, resulting in less selective tuning that is less correlated with MUA. 

 

Their proposal is based on the assumption that gamma rhythm reflects neural activity 

from a region about 450-600 µm, estimated by its similarity with spiking activity. 

However, I found that the spatial extent of gamma can cover many pinwheels and linear 

zones of the orientation map, and in such a situation its preference dissociates from local 

spiking activity. Therefore, the ‘pinwheel’ versus ‘linear zone’ hypothesis may not hold 

under this condition. However, we confirmed in our data set that with large grating 

stimuli, their observation of the selectivity changing trend as a function of the relative 

preference difference between gamma and local MUA still holds.  

 

To explain this phenomenon, I propose that there is a competition between the broadband 

gamma, which is selective and always tuned similarly to local spiking activity, and the 

‘bump’ gamma component, which is the selective global rhythm. When the orientation 

tuning of the global component happens to match that of the local spiking activity, the 

two components in the power spectrum of gamma rhythm will have similar tuning. 

Adding their power together will not reduce orientation selectivity. On the contrary, when 

the orientation tuning of the global gamma dissociates from local spiking activity, the 

selectivity of the tuning of the ‘bump’ and broadband components will be offset so their 

sum will be less selective. Thus, the simple sum of the two distinctive gamma 
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components could result in the dependence of gamma selectivity on its similarity with 

local spiking activity.  

 

5.5 Preference of global gamma rhythm  

What gives rise to the orientation preference of the global gamma rhythm is unclear. We 

have proposed that its preference could come from a magnified representation bias of the 

neuronal responses underlying the generation of the global gamma rhythm. Even though 

prolonged orientation adaptation has demonstrated that the orientation preference of 

gamma rhythm is sensitive to an externally induced bias in neuronal response (Chapter 

3), it is still unclear where the preferred orientation comes from in the first place. There 

are two natural questions to ask: Do we consistently get the same preferred orientation in 

the global gamma rhythm that is induced by large gratings when we record from the same 

patch of visual cortex? Is there a certain orientation that gamma always prefers, for 

example vertical or horizontal in any cortical region?  

 

The observation that the preferred orientation of global gamma recovers to its original 

preference before adaptation suggests that there is a physiological neuronal substrate that 

generates the preferred orientation of gamma (Chapter 3). This result seemingly supports 

the conclusion that the gamma preference recorded from the same cortical region is 

consistent. The aggregate receptive field size of our recording array is about 2-3 degrees, 

but the global gamma rhythm is not prominent until stimuli are at least 4 degrees in size. 

This allows us to present the large grating stimuli (10 degree) at different locations while 

keeping the recorded region driven. Results in Appendix II showed that even though the 



227 
 

recorded region is always stimulated by the large gratings, the preference of the global 

gamma changes systematically as the location of the large gratings in visual space 

changes.  

 

This result argues against the possibility that the preference represents a hardwired 

neuronal population tuning property in the recorded cortical region. Instead, the 

orientation preference of the global gamma rhythm could be flexibly formed based on 

which visual cortical regions are activated coherently and contribute to the formation of 

the global gamma. Therefore, the answer to the first question is that the tuning of the 

global gamma detected at one cortical location or even a large cortical area is flexible 

depending on the network generating gamma. 

 

To answer the second question, I compared the orientation preference of the global 

gamma rhythm from 22 hemispheres, but did not find a consistent preferred orientation 

(See Figure 2.15 in Appendix II). However, I did observe a tendency for the preferred 

orientation to cluster between 0 and 90 degree when the array was implanted in the right 

hemisphere, while the preferred orientation tended to reside between 90 and 180 when 

array was implanted in the left hemisphere.  

 

Recent studies of the orientation tuning of the BOLD-fMRI signal have revealed that the 

each location in the primary visual cortex tends to prefer an orientation that is specified 

by its radial position relative to the fovea (Freeman et al., 2011; Sasaki et al., 2006). 

Because the BOLD-fMRI signal reflects neural activity at a coarse level, this suggests 
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that there is a general radial bias of the neuronal representation. If true, it is possible that 

this radial bias could underlie the orientation preference we observe in the global gamma 

rhythm. Our preliminary findings support this hypothesis. We observed that the global 

gamma preference followed the summed radial bias of the activated region (Appendix II: 

Figure 2). However, more evidence and analysis is required to fully test the radial bias 

theory, and to understand the preference of the global gamma rhythm more generally. 

 

It is interesting to note the orientation preference of the gamma rhythm is not fixed at a 

given cortical location, which could be different from the radial bias observed in fMRI 

studies that showed similar orientation preference that is radial to the fovea across at the 

same visual cortical regions even in different individuals. Further tests using similar 

stimulus conditions and subjects are necessary to make the direct comparison, because 

the radial bias detected with fMRI could reflect a neuronal representation bias of a neural 

population which is the underlying source of the preferred orientation in global gamma 

rhythm, but cannot explain the network mechanism that gives rise to the preference in 

gamma. 

 

5.6 Laminar dependency of LFP power  

The strength of gamma is laminar dependent. The manuscript in Appendix IV (submitted 

manuscript) demonstrates that stimulus induced gamma power (30-50Hz) is higher in the 

middle layers of the visual cortex and lower in the superficial and deep layers. An 

opposite trend is seen in the low-frequency (0-10 Hz) power of the LFP: this is relatively 

weaker in the middle layers, but significantly stronger in the deep layers. These 
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observations suggest that the different neuronal circuits and architecture in different 

cortical layers of a single cortical area can generate different rhythms. The laminar 

dependence of the LFP power we observe is inconsistent with a recent paper, which 

suggested that the LFP signal originates from the infragranular layers rather than granular 

layers (Maier et al., 2011). However, their early work also showed similar trend as our 

gamma power across layers, but different changing trend for low frequency power (Maier 

et al., 2010). This discrepancy could be caused by several differences in experiment 

paradigms: First our analysis is based on induced LFP power, while the other study did 

not separate out the evoked component; Second, we used anesthetized monkeys while the 

other study used awake monkey (we used different visual stimulus conditions); Third, we 

recorded different depth independently while the other study used translaminar linear 

array; Finally, we computed power based on induced signals and the other study 

computed band-limited power and the second derivative of the band-limited power. 

Although more work is required to resolve this discrepancy, I will discuss the laminar 

circuitry with our observation which indicates that the induced gamma power is strongest 

in the middle layer. 

 

There are two basic requirements for gamma generation: excitatory inputs and a coupled 

inhibitory neuronal network. Middle layers of primary visual cortex (layers IV), which is 

generally referred as the granular layer, contain different types of inhibitory interneurons 

and densely packed granule cells. These neurons receive excitatory inputs from thalamus 

(LGN) and infragranular layers (layers V and VI) and projects to supra and infra granular 

layers (III, V and VI) in the same column (Peters et al., 1994). Granule cells in layer IV 
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of primary visual cortex have spiny dendrites with most of their axons emerge from the 

side facing infragranular layer. This morphology would allow the neurons in layer IV to 

form dipole electrical field and the densely aligned structure of these neurons in the 

middle layer allows the accumulation of extracellular electrical field. The proportion of 

GABAergic interneurons is roughly consistent across cortical layers, which is about 20% 

of the total neurons, except some inconsistent higher proportion in layer IV (Hendry et 

al., 1987) or layer II-III (Fitzpatrick et al., 1987). Therefore, the strong excitatory 

feedforward inputs from thalamus and the existence of inhibitory interneurons (Lund, 

1988; Lund et al., 1979) provides the cellular basis for gamma generation.  

 

However, according to pyramidal interneuron gamma (PING) model which proposes that 

the generation of gamma rhythm involves the interaction between pyramidal neurons, 

which mostly present in the superficial and deep layers, and inhibitory interneurons, layer 

IV seems unlikely to be the signal source of gamma rhythm. However, most models of 

gamma formation are based on slice recording in the hippocampus(Bartos et al., 2007). 

Considering similar properties between pyramidal cells and granule cells, it is possible 

that if gamma originates from middle layer in the cortex, formation of the gamma rhythm 

uses granule cells instead of pyramidal neurons. Alternatively, since the pyramidal 

neurons are vertically orientated and have synapses terminate in the middle layer, it is 

important to consider that the majority of the inputs to layer IV originate from other 

layers in the same cortical column (Peters et al., 1994). Therefore, it is possible that 

recurrent connections provided by the microcircuitry across laminar can contribute to the 

formation of gamma rhythm. Nevertheless, why gamma is strongest in the middle layer is 
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still an open question that requires further dissection of the neuronal substrates and 

circuitry. Our finding of the laminar dependence of gamma power also provides more 

constrains on the micro-circuitry proposed in gamma formation.  

 

In addition, the limited spatial extent of the neural circuitry in the middle layers is 

inconsistent with the spatial extent of the gamma. Compared with middle layers the 

superficial and deep layers are more richly interconnected horizontally, by lateral and 

long-range horizontal connections known to extend for several millimeters (Gilbert and 

Wiesel, 1983, 1989; Ts'o et al., 1986). It is possible that the generation of the strong 

gamma power involves the extensive horizontal connections in superficial and deep 

layers, which synchronize the neuronal activity from a broad region and feedback onto 

the neurons in the middle layers, but the higher gamma power in the middle layer stands 

out because the summed voltages that are passively conducted from other layers. 

Alternatively, it is also possible that the interneurons in the middle layers are coupled by 

gap junctions (Traub et al., 2001), which can synchronize and extend the inhibitory 

network and contribute to the formation of a global gamma rhythm, since the conduction 

delay by horizontal connections could be too slow to form gamma rhythm. However, it is 

important to note that the stimulus size we used in the depth experiments are intermediate 

sizes in the curve of the spatial extent of gamma. It is possible when gamma power is 

dominated by the global rhythm, the laminar distribution of gamma power will be 

different. It is also important to emphasize that the gamma power is highest in the middle 

layer but the range with significant gamma is much broader than a single layer in the 
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cortex. More studies targeting specific neuronal subtypes are required to tease apart these 

possibilities. 

 

5.7 Laminar effects on array recordings 

Although we can manipulate the strength of gamma with visual stimuli, the maximum 

gamma power induced by large gratings is variable across implants. In addition to 

variability caused by individual animals and anesthesia, the laminar dependency of 

gamma power could also in part explain this variability in gamma power. The length of 

each electrode on the array is 1 mm. We implant the electrodes to a nominal depth of 

about 600-800 µm, but it is difficult to control the precise depth of the insertion. If the 

implantation is not deep enough, gamma power would be expected to be significantly 

weaker, and the gamma ‘bump’ of the power spectrum absent. This could account for the 

differences in the degree of clustering of orientation preference in different implants. 

 

When a rigid flat array is implanted into the brain, the depth of the recording electrodes 

on the same array could be slightly different depending on the angle of implantation and 

curvature of the brain surface. This could be potentially problematic for two reasons. One 

is that the strength of gamma power could be variable on the same array caused by the 

depth dependency of gamma power. The other problem is the potential influence of depth 

on the detected gamma phase. Assuming a global rhythm originating from the middle 

layers of the cortex that horizontally extends more than 9 mm, sensing the same rhythm 

in the superficial layers could artificially introduce a phase delay relative to its origin. 
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Under this condition, we might get less phase coherent gamma rhythm simply because of 

the unfair measurement of phase rather than an indication of less global gamma rhythm. 

 

5.8 Active and resting states 

During active states, the featured rhythms are different in different brain regions and have 

their own characteristic properties (Kopell et al., 2000). For example, the stimulus-

induced rhythm is in the gamma frequency range in visual cortex, while beta rhythm (12-

30Hz) is most distinctive in the motor cortex during motor tasks and the theta rhythm is 

prominent in the hippocampus. Based on our understanding of the network mechanisms 

generating gamma and theta, the reason that different brain areas possess different 

signature rhythms during active state could be caused by the different neuronal circuitry, 

properties and morphology of the neurons in those areas. Along the same line, if we 

understand the network mechanisms that give rise to the different rhythms, they can be 

used as a macroscopic indicator of the properties of the neuronal network. However, 

although different brain areas may have different rhythms during active states, the 

prominent fluctuation during resting state is always at low frequencies, and these are 

suppressed during the active state. 

 

During resting state, brain rhythms are dominated by low frequency fluctuations. This 

suggests that the brain can self-generate long timescale oscillatory activity patterns in the 

absence of external or internal activation. The origin of these low frequency fluctuations 

(<5 Hz) could come from interactions between thalamus and cortex (Buzsaki, 2006). 

Studies using functional imaging have investigated the functional or structural 
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connectivity of default brain activity during resting state (<1Hz) (Greicius et al., 2009). 

However, the neuronal circuitry involved in the generation of slow low frequency 

fluctuations during resting state is still unclear, as is their potential functional role. It is 

thus interesting to ask the question why at default state low frequency power dominates. 

Does it mean the neural circuitry involved in the generation of different rhythms, for 

example low frequency and gamma rhythms, are mutually exclusive?  

 

5.9 Weak anti-correlation between low frequency and gamma rhythms 

Much evidence suggests a general anti-correlation between higher frequency power, 

especially gamma frequency, and low frequency activity of the LFP (<10Hz). For 

example, compared with spontaneous activity, visual stimuli induce more gamma power 

but reduce low frequency power. Enlarging stimulus size also increases gamma power 

and reduces low frequency power. Another consistent observation is the opposite laminar 

dependence of low frequency power of the LFP and the gamma rhythm. Unlike the 

gamma rhythm, low frequency fluctuations do not have clear receptive field properties. 

For example, power in this band is not orientation tuned and adaptation effects in these 

frequencies are also not specific to the adapted orientation. Therefore, although the 

general relationship between low frequency power and gamma are anti-correlated, the 

negative correlation may not apply during sensory-driven conditions for different feature 

selectivity, because the neuronal circuitry involved in slow fluctuations are more active 

during the spontaneous state and does not have significant selectivity for visual stimulus 

features. 
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5.10 LFP and neuronal correlation 

It has been shown that long timescale correlated neuronal response, reflected in the broad 

peak of the cross-correlogram (CCG), is more prominent during spontaneous activity or 

with low contrast gratings, and suppressed during high contrast stimulus driven state 

(Kohn and Smith, 2005). I have introduced in the general Introduction that low frequency 

correlation in neural membrane potentials are stronger during resting state, and is 

decorrelated in the active state, whereas gamma-band synchronization of neuronal 

responses serve as a signature for active brain state. Together with our observations of 

similar depth laminar dependence of neuronal spike count correlation (rsc), broad peak of 

CCG and low frequency power (Appendix IV), and the reduction of low frequency power 

of the LFP with sensory inputs compared to spontaneous (Jia and Kohn, 2009) and with 

large gratings compared with small suggest a potential link among low frequency 

correlated voltage fluctuations in the LFP, spike count correlation (rsc) and long 

timescale neuronal correlation (broad peak of CCG or low frequency of the spike-spike 

coherence).  

 

Specifically, the energy in low frequency fluctuations of the extracellular field potential 

could reflect coordinated neuronal activity on long timescales and indicate that the 

network is less synchronized on brief timescales. What are the benefits of resting states to 

have long timescale neuronal correlation? One possibility is that in a highly 

interconnected neuronal network, the spontaneous neuronal activity in individual neurons 

(either stochastic or rhythmic at different frequency) will reach harmony every now and 

then, with the regulation of thalamic inputs at resting states during this process (Buzsaki, 
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2006). If this hypothesis of spontaneously generated slow fluctuation is true, then low 

frequency energy and the long timescale neuronal correlation may purely reflect the 

default state of the brain rather than serving any functional purpose. Alternatively, the 

slow timescale correlated fluctuations may be a default state and any interruption of this 

correlated activity will appear more distinguishable to the brain.    

 

Previous work failed to establish a solid link between brief timescale neuronal correlation 

(synchrony) and neural activity in the gamma frequencies, reflected either in pairwise 

neuronal gamma-band synchronization or the gamma rhythm of LFP. Instead, there is 

only limited evidence for a relationship between synchrony and gamma, except for some 

weak or negative observations (Fries et al., 2008; Roy et al., 2007; Samonds and Bonds, 

2005), even though this relationship has been implied and widely assumed. Chapter 4 of 

my thesis examined the relationship between strength of stimulus induced gamma rhythm 

and brief timescale neuronal correlation of a large neural population and found a strong 

correlation between these two. 

 

In summary, the power in each frequency of the LFP is related to the neuronal correlation 

at different timescales: the power of the gamma rhythm reflects brief timescale neuronal 

correlation while lower frequency energy reflects long timescale neuronal correlation., 

The reduced low frequency activity with sensory inputs could reflect decorrelation on 

long timescale (Appendix IV) and allow more specificity of coding in the responses of 

individual neurons (Cohen and Maunsell, 2009; Mitchell et al., 2009). The enhanced 

stimulus selective gamma activity can carry more information of the sensory inputs, 



237 
 

increase neuronal synchrony and potentially influence signal propagation. Therefore, the 

ratio between gamma and slow fluctuations (<10Hz) could be used as an indication of 

neuronal network state.  

 

5.11 Surround, cortical feedback and gamma rhythm 

Neuronal responses within the classical receptive field are suppressed when 

simultaneously activating a surrounding area, which by itself does not evoke a response 

in the receptive field center (Cavanaugh et al., 2002a; Jones et al., 2001; Kapadia et al., 

1999; Knierim and van Essen, 1992). Anatomical and physiological studies have shown 

that surround effects could involve horizontal connections within V1 and feedback 

connections from higher visual areas (Angelucci and Bressloff, 2006; Angelucci et al., 

2002a; Angelucci et al., 2002b; Schwabe et al., 2006). Since gamma can form a global 

rhythm and gamma power increases monotonically with enlarging stimulus size 

(Gieselmann and Thiele, 2008; Jia et al., 2011), it is possible that feedback connections 

from higher cortical areas would contribute to the formation of global gamma rhythm. 

 

Although there is no direct evidence of feedback connections in shaping the surround, it 

has been found that the effect of surround suppression propagates significantly faster than 

conduction delay of horizontal connections, which could be account for by the 

participation of feedback connections from higher cortical areas (Bair et al., 2003). 

Additionally, surround suppression has slower dynamics compared to responses within 

the classical receptive field (Smith et al., 2006; Webb et al., 2005). In Chapter 2, I have 

demonstrated that gamma power takes about 200ms to reach its maximum strength, 
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which is much slower than the dynamics of neuronal response in the center but closer to 

the dynamics of the surround response. Therefore, the slow dynamics of surround 

suppression and gamma power indicates that they might share similar network 

mechanisms, potentially involving feedback modulation from extrastriate cortex. 

 

In Appendix III, I show with preliminary results that gamma power in V1 is enhanced 

with weak electrical stimulation of neurons in V2 that presumably send feedback 

connections to V1. These findings indicate that activating neurons in higher cortex can 

potentially increase the excitatory drive to the lower cortical neurons, enhancing the 

strength of the gamma rhythm. Even though microstimulation in a reciprocally connected 

networks could introduce changes that are not specific to feedback connections, these 

results provide additional supporting evidence for the proposed involvement of feedback 

connections in the formation of gamma activity. 

 

Another piece of evidence in support of the involvement of feedback in gamma rhythm 

generation is the associated changes between gamma activity and the allocation of spatial 

attention (Fries et al., 2008). Attention is a cognitive process that involves effective 

concentration on one thing while ignoring others. The instructed allocation of attention is 

an active top-down mental process. Therefore, enhanced gamma power with attention 

suggests top-down process, which indicates stronger feedback regulation, could 

participate in gamma activity.  
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If gamma activity involves feedback from extrastriate cortex where receptive fields are 

larger and more complex, it is possible that the gamma activity could help with 

perceptual grouping of low-level visual features according to certain rules, like 

proximity, similarity and smoothness (Koffka, 1935; Roelfsema, 2006). It has been 

demonstrated that feedback projections from higher visual areas can facilitate figure-

ground segregating in lower visual areas (Hupe et al., 1998), but see (Hupe et al., 2001a) 

for counter evidence. Similar to the slow dynamics of induced gamma power, the time-

course of the perceptual grouping related phenomena in V1--figure-ground segregation 

(Lamme, 1995) and border ownership (Zhou et al., 2000)--are also slow and only 

distinguishable 200 ms after stimulus onset. This delayed response time is consistent with 

the dynamics of surround suppression and gamma, which is long enough to allow 

feedforward information to reach prefrontal cortex and feedback to V1 (Hupe et al., 

2001b; Movshon and Newsome, 1996). More interestingly, gamma power is reduce on 

the boundary of two textures (Gail et al., 2000), suggesting a sensitivity of gamma to 

figure segregation. These findings imply a potential functional role of gamma activity in 

perceptual grouping and the possibility to study complex visual processing through 

changes in gamma activity. 

 

5.12 Potential functions of gamma 

 

5.12.1 Temporal reference--Binding 

To resolve the perceptual binding problem (Treisman, 1996; Wolfe and Cave, 1999), 

previous studies have proposed a theory named ‘binding by synchrony’ (Engel et al., 
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1997; Singer, 1999; Singer and Gray, 1995). This suggests that when neurons are 

synchronized in milisecond timescale, they are bound together as a neural ensemble for 

downstream processing. This theory was supported by the finding that neurons are more 

synchronized when they have similar orientation preferences or stimulated with a single 

bar stimulus (Freiwald et al., 1995; Gray et al., 1989). Because similarity and continuity 

belong to the criteria of perceptual binding proposed by Gestalt psychologists, synchrony 

among neurons could be used as a binding mechanism (Engel et al., 1999; Engel et al., 

1997).  

 

This theory was extended to ‘binding by gamma-band synchronization’ later because of 

observations of rhythmic activity in a neural ensemble synchronized in the gamma 

frequency, which is both selective for stimulus features (Fries et al., 2002; Gray and 

Singer, 1989; Liu and Newsome, 2006; Vinck et al., 2010) and sensitive to stimulus 

context (Fries et al., 1997; Jia et al., 2011; Lima et al., 2010; Zhou et al., 2008). It has 

also been proposed that the gamma rhythm can be used as a temporal reference which 

regulates spike timing and associates neural ensembles for further processing (Fries, 2009; 

Fries et al., 2007). However, given all these findings and proposals, there are two 

important questions that are still unanswered: the first one is how neuronal synchrony 

relates to gamma rhythm in the brain; the second one is the relationship among synchrony, 

gamma activty and the efficiency of signaling (Singer et al., 1996), which is the 

determinating evidence for the theory of binding.  
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Previous studies in awake monkeys have indicated a correlation between gamma LFP 

power and gamma band neuronal synchronization, seen as enhanced pairwise spike-spike 

coherence or spike-field coherence (Fries et al., 2008; Herculano-Houzel et al., 1999; 

Lima et al., 2010). However, few studies have compared neuronal synchrony in brief 

timescale with the strength of gamma, and those studies that have reported null (Fries et 

al., 2008) or weak (Samonds and Bonds, 2005) findings. Chapter 4 of my thesis 

addressed these questions and provided an extensive test of the relationship between 

gamma and pairwise and higher-order synchrony in a neuronal population with a wide 

range of stimulus manipulations, and revealed stronger effects than previous studies. One 

possible reason is that our experiment design allows us to manipulate gamma power up to 

2-fold, which is significantly larger compared to previous studies. Our findings 

demonstrated correlated changes in brief timescale neuronal synchrony and gamma 

power, along with significant changes in transmission efficacy between V1 and V2. 

These findings suggest that the global gamma rhythm could be used as a temporal 

referencing frame to form a synchronized neural ensemble, with enhanced efficacy of the 

outputs from this neural ensemble in driving target neurons. These findings are thus in 

favor of the ‘binding by synchronization’ hypothesis.  

 

The binding problem consists two parts: segregation of different features and grouping of 

similar features. Our finding of the spatial extent of the global gamma rhythm provided 

the possibility for gamma to group spatially segregated neurons together and potentially 

the mechanism of segregation, based on the sensitivity of gamma to spatial continuity of 

the visual stimuli. If gamma rhythm can be used as a mechanism in the ‘binding’ process, 
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it also needs to have specificity in the grouped neural ensemble, for example selectively 

grouping neurons representing features of the same object or with similar preferences. 

However, with our current understanding of the gamma rhythm, it is unlikely that gamma 

possesses fine spatial scale specificity, since the gamma rhythm with the  potential to 

support neuronal synchrony over long distance (Chapter 4; see also (Konig et al., 1995)) 

is a global rhythm (Jia et al., 2011), with shared feature selection properties in different 

locations and does not have specificity for individual neurons. Therefore, our study not 

only provided supporting evidence for the potential functional role of gamma in 

perceptual binding but also restrictions. To evaluate the ‘binding by gamma-band 

synchronization’ hypothesis, it is of great importance to solve the specificity problem of 

gamma rhythm first.  

 

5.12.2 Communication channel 

Since selective attention can increase gamma power, it has been proposed that the gamma 

rhythm can function as a communication channel, which selectively routes information 

between cortical areas (Womelsdorf and Fries, 2006). Furthermore, enhanced cross-area 

coherence in the gamma frequency range has been observed in many cortical and sub-

cortical regions during attention (Buschman and Miller, 2007; Gregoriou et al., 2009; 

Womelsdorf and Fries, 2006; Womelsdorf et al., 2007), learning (Popescu et al., 2009) 

and memory tasks (Jutras et al., 2009; Montgomery and Buzsaki, 2007). Additionally, the 

reaction time of human subjects is shortened with increased gamma band coherence 

between cortex and spine (Schoffelen et al., 2005a). All these evidences suggest that 

enhanced gamma coherence correlates with more effective communication and ultimately 



243 
 

leads to another proposed function of gamma: the ‘communication through coherence’ 

hypothesis. This hypothesis states that when the gamma rhythms in two neuronal groups 

are in good phase relationship, the communication efficiency between the two groups is 

maximal (Fries, 2009; Womelsdorf et al., 2007).  

 

This proposal requires that the efficacy of signal transmission changes with gamma 

coherence (Akam and Kullmann, 2010; Knoblich et al., 2010; Salinas and Sejnowski, 

2000, 2001). However, previous studies fail to demonstrate how gamma activity between 

neuronal networks affects the relaying of spiking activity. Our study is thus the first to 

demonstrate clearly that in synaptically-coupled networks, upstream inputs (V1) are more 

effective in driving downstream neurons (V2) when gamma power is enhanced in both 

areas, and this is accompanied by increased gamma band V1-V2 coherence.  

 

The proposal of corticocortical communication through coherence (Schoffelen et al., 

2005b; Womelsdorf et al., 2007) involves a postsynaptic mechanism--the downstream 

gamma rhythm--which can effectively gate, or modulate, the efficacy of input, depending 

on its arrival time with respect to the local gamma rhythm. It is important to note that the 

basis of this hypothesis is the interpretation of the gamma cycle (Fries et al., 2007). If 

different phases of gamma cycle reflect the relative strength of local excitation and 

inhibition, the timing of input spikes relative to the gamma cycle will affect their ability 

to drive the target neuron. Based on this, gamma band coherence of neuronal activity can 

dynamically group neurons into functional ensembles and select relevant information 

during attention (Womelsdorf and Fries, 2006, 2007). We directly tested synaptic 



244 
 

efficacy as a function of V2 gamma phase and found that it was more related to the 

temporal alignment by presynaptic inputs rather than regulation of postsynaptic gamma 

phase (Chapter 4).  

 

When gamma is strongest in V1, this is reflected in a coherent, albeit phase-delayed, 

gamma rhythm downstream. Indeed, in a feedforward architecture in which population 

inputs are varying rhythmically at gamma frequencies, it would appear difficult to 

establish a local rhythm with independent phase relationship with respect to those inputs. 

In this sense, it may not be appropriate to consider the gamma rhythms in the two 

coherent areas as two independent signals, both capable of selecting specific 

subpopulations of neurons to be functionally channeled. With these arguments, I 

speculate that the enhanced coherence between cortical areas could be a pure 

epiphenomenon of rhythmic feedforward synaptic inputs and local network, rather than a 

functional channel of information transmission. Further work is needed to distinguish 

between the communication through coherence hypothesis and this alternative possibility. 

 

5.13 Restrictions on potential functional role of gamma  

 

5.13.1 Change in efficacy is different from firing rate 

I have shown in Chapter 4 that the gamma rhythm induced with large gratings, especially 

its preferred orientation, correlates with enhanced neuronal synchrony in V1 and 

increased effectiveness of each spike in V1 in driving downstream V2 neurons. If gamma 

influences signal processing by manipulating spike efficacy, it is natural to expect that 
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large gratings should cause higher firing rates in downstream neurons and that the 

orientation preference of neurons in V2 should follow the orientation tuning of global 

gamma in V1. In fact, large gratings suppress neuronal firing in V2 as well as in V1, and 

the tuning of V2 neurons does not follow V1 global gamma activity. This suggests that a 

change in the efficacy of input spikes from one area to another do not indicate a change 

in the output firing rate of the target neurons. This could be caused by several reasons. 

First, although the efficacy of individual spikes in driving target neurons increased with 

large gratings, the total number of output spikes from V1 decreased with large gratings. 

The summed effect could be dominated by the number of spikes rather than the 

effectiveness of each spike. Second, the reduction of firing rate with large size is not only 

caused by a change in feedforward inputs, but also surround suppression coming from 

lateral connections and feedback. In other words, the firing probability of the V2 neuron 

could be higher after each synchronized V1 spike, but the inputs to V2 neurons can also 

involve other sources. As a result, input efficacy from one source cannot determine the 

fate of the target neuron. This reason could also explain why tuning of V2 neurons does 

not follow the orientation tuning of global gamma in V1. Third, it is important to note 

that although the change in single spike efficacy is significant, the absolute difference in 

efficacy is still small. Even without the effect of input firing rate, the consequence of 

such small changes in efficacy may not be functionally important.    

 

5.13.2 Sensitivity of global gamma 

The stimulus induced gamma rhythm is extremely sensitive to the spatial and temporal 

continuity of the visual stimuli. For example, compared with a constantly drifting large 
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grating stimulus, smaller stimulus size (Gieselmann and Thiele, 2008), abrupt changes in 

drifting speed (Kruse and Eckhorn, 1996), the boundary of two gratings with phase offset 

(Gail et al., 2000), noise-masking (Jia et al., 2011), gradual changes in the contrast of a 

grating (Ray and Maunsell, 2010) and super-imposing another grating (Lima et al., 2010) 

will reduce the power and coherence of the gamma rhythm. The sensitivity of gamma to 

visual stimuli properties make it hard to form in a continuously changing environment.   

 

5.13.3 By-product or key-player 

It is hard to distinguish whether the observed brain rhythms are pure by-product of the 

neural activity of the brain or has a functional role (Buzsaki and Draguhn, 2004; Fries, 

2009; Ray and Maunsell, 2010). The magnitude of extracellular gamma rhythm, even 

when strongly induced (~200 µV), is much weaker compared to the strength of electrical 

field necessary to influence the firing of the neurons (Frohlich and McCormick, 2010), 

which is about 1mV. However, it is still possible that in vivo the large gamma rhythm 

might have some influence on membrane potential (e.g. through ephaptic effects).  

 

Nevertheless, it is important to remember that even hypothetically, gamma could 

influence the firing pattern of individual neurons, the neural network needs to first 

generate the strong gamma rhythm. Given that only synchronized network has the 

potential to form a strong rhythm, the strong gamma rhythm is the consequence rather 

than the requirement for the formation of a synchronized network. However, after 

forming a global gamma, whether this rhythm could help regulate spike timing and 

maintain the network in the oscillatory state is unclear.  
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5.14 Technical factors affecting results 

There are several technical factors that might affect the results in addition to stimulus 

paradigm. These include recording issues like electrode impedance, volume conduction 

and referencing, drift in eye position, and different calculation methods. 

 

For electrode impedance, even if all electrodes are at the same depth, the variability of 

the impedance of electrodes from the same array can still change gamma power. 

However, since we always compare gamma under different conditions on the same 

electrode, this is not likely to strongly influence our results. 

 

Volume conduction is often a concern when evaluating LFP studies. To make this 

problem clearer, I would like to introduce the circuitry of LFP measurement first. 

Consider the signal source of the detected LFP as an electrical power source with 

alternating current, our detecting electrode as a volt meter which measures voltage 

difference between the sensing point and a reference, and the brain tissue between the 

signal source and the sensing electrode as a resistor with certain conductance. What we 

measure from the recording electrode is actually signals that are volume conducted 

through brain tissue from the signal source. Because of the resistance of the brain tissue, 

the amplitude of the detected signal will decay as a function of distance between the 

sensing electrode and signal source. Therefore, volume conduction can affect the spatial 

resolution and amplitude of the measured LFP, which means it could potentially affect 

our characterization of the tuning and spatial extent of gamma rhythm. Some studies have 
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tried to estimate the spatial extent of passively propagated field potential signals and 

found various values. Some propose that the passive propagation of the evoked LFP 

potential, including gamma, is restricted to ~300 µm around the recording electrode, 

since its tuning is similar as local MUA and different from the tuning detected on the 

other electrode 400 µm apart (Katzner et al., 2009). Visual evoked potentials in another 

study revealed similar results, which is about 250 µm around the recording tip, with 

variations across laminae (Xing et al., 2009). A recent study further demonstrated that 

laminar structure can affect volume conduction but found a much broader extent of 

volume conducted voltage (Kajikawa and Schroeder, 2011). Therefore, it is possible that 

at any location, the detected LFP is a mixture of local signal and many other signals 

passively conducted there. However, even though the signals from other sources can 

ultimately reach the sensing electrode, the extracellular signal detected by the recording 

electrode is a summed signal and the contribution of other signals could diminish after 

summation because of phase offset and only remain the signal originate from local neural 

activity which gets effectively aggregated. This is supported by the fact that tuning of the 

evoked potential is similar as local spiking activity but different on neighboring 

electrodes (Katzner et al., 2009). For the stimulus induced gamma oscillation which is 

spatially coherent, it is still impossible for signals that originate from other sources to 

aggregate. Since the global gamma is phase coherent at any location at a given time 

point, the passive propagation of signals from different distances will cause different 

phase delays and in the end fail to accumulate. In addition, the high orientation selectivity 

index of the global gamma rhythm that is comparable to MUA suggests a limited 

contribution from volume conduction (For additional arguments against the volume 
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conduction contribution, please see discussion section in Chapter 2). Therefore, the 

spatial extent of our observed global gamma rhythm is not a result of volume conducted 

signals from a spatially extensive region, but is generated from a synchronized neural 

network. However, since the passive volume conduction always exists, it is necessary to 

evaluate its contribution in the results and separate it from any active process.  

 

Another relevant technical issue is referencing. The voltage signal is always measured as 

a difference between the recording electrodes relative to a reference. In the array 

recordings, we place two independent wires underneath the dura at different locations and 

use either of them as a reference for data collection. Since the reference wire can be 

treated as a measure of intracranial field potential, our detected local field potential from 

the array is actually a difference between local field potential and the intracranial field 

potential. Because the intracranial field potential is dominated by very slow fluctuations 

and is much weaker, the difference has less influence on the gamma rhythm. To rule out 

the potential contribution of referencing in our results on the global gamma properties, 

we did two independent controls. First, we simultaneously recorded the global gamma 

rhythm from both multi-electrode array and the Thomas system, whose reference is the 

guide tube of each electrode. We found that the tuning of global gamma was the same in 

these two systems. Second, we compared the orientation tuning of the global gamma with 

recordings using different referencing wires of the array. If the orientation bias is 

introduced by a potential tuning of gamma detected in the referencing wire, we would 

notice a difference under this condition. We found exactly similar orientation tuning of 

global gamma rhythm from the two independent referencing wires (data not shown). 
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Therefore, different referencing and recording systems can only alter the amplitude of the 

signal but not its preference.  

 

A final consideration is that drift in eye position can affect the tuning of gamma detected 

at a particular location on the cortex. Because the preferred orientation of global gamma 

depends on the region of visual cortex that is involved in the generation of this rhythm, 

when there is significant eye movement while the visual stimulus is presented at the same 

location on the monitor, different visual cortical region relative to fovea gets activated 

and will change the tuning of gamma rhythm. Throughout my thesis, all tuning 

evaluation is based on stimuli centered on the aggregated receptive field of the array. 

Since we use norcuron (vecuronium) to prevent eye movement and frequently monitor 

the receptive field location during our experiments, it is unlikely eye movement strongly 

affected our data. However, it is important to be aware of this issue in awake monkey 

experiment and during long recording sessions. 

 

Except for recording issues, it is possible that different approaches of analysis would 

result in different results. I would like to point out that different windowing methods of 

the power spectrum estimation of the LFP and different normalization methods of the 

LFP power will not alter our findings. To be sure of this, I compared tuning of the LFP 

with power spectrum calculated with different windowing methods and found similar 

tuning with all methods. Since we compute the power spectrum using Fourier transform 

on a time limited chunk of signal, we need to apply smoothing window function to 

prevent energy leakage. It is important to note that different window sizes can affect the 
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resolution of the estimated power spectrum. For a given window size, different window 

functions can also alter the shape of the spectrum. Therefore, for a given signal, choosing 

a proper window size and function is critical for a good estimation (enough resolution but 

not noisy) of the power spectrum. We used multi-taper method that has been widely used 

and proven to be sufficient (Mitra and Pesaran, 1999; Pesaran et al., 2002). However, as I 

have mentioned, our findings do not depend on the method of power spectrum 

estimation.  

 

To evaluate stimulus-driven changes in LFP power, some studies normalize the power 

spectrum by subtracting or dividing by the power spectrum of spontaneous activity 

(Berens et al., 2008; Gieselmann and Thiele, 2008; Henrie and Shapley, 2005; Logothetis 

et al., 2001), others used the raw power (Jia et al., 2011; Liu and Newsome, 2006). I 

compared orientation tuning of gamma based on raw power with normalized data and did 

not observe a major difference. However, I presented the power spectra of both stimulus-

driven and spontaneous activity rather than normalizing, since the origin of different 

frequency components of spontaneous activity is unclear, it is not easy to justify the 

meaning of power after normalization.   

 

5.15 Speculation: potential applications 

My thesis focused on the properties of gamma rhythm of the LFP and its relationship 

with neuronal activity. Regardless of the potential functions that the gamma rhythm 

serves in the brain, there is a neural network that is actively involved in generating this 

rhythm. Therefore, with our understanding of the neuronal network activity underlying 
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the changes of gamma rhythm, we can use gamma as an indicative signal of changes in 

neuronal response when we cannot record directly. For example, abnormal gamma could 

reflect abnormal inhibition and thus suggest an abnormality in GABAergic interneurons 

or the synaptic coupling among inhibitory neurons. This link could be useful in the 

studies of brain disease, since unusual gamma activity has been observed in Alzheimer’s 

disease, Schizophrenia and autism (Uhlhaas et al., 2006; Uhlhaas and Singer, 2006).    

 

Additionally, it has been noticed that the cross area synchrony and magnitude of gamma 

is trainable by mental practice like meditation (Lutz et al., 2004). The effect of phase 

synchronization and the strength of gamma are significantly higher in Buddhist 

practitioners than newcomers during meditation. This suggests that meditation can induce 

long-term changes in a large scale neural network. However, it is unclear why mental 

practice can induce this fast timescale synchronization and how continuously strong 

gamma activity would affect the neuronal responses. Another interesting observation is 

that the gamma activity recorded in the practitioners during meditation is the strongest 

gamma rhythm recorded by EEG so far. In traditional Chinese medicine, there is a mental 

practice called ‘气功 (qi gong)’, which refers to the mentally guided circulation of 

imaginary flow around the body. During practice, the person can be more sensitive to 

environmental changes with eyes closed and the electrical magnetic field around that 

person is enhanced. Since this is also an attention based process, I wonder whether 

gamma synchronization could explain the mental change after practice.  
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Last but not least, the ability of individuals to control the strength of attention related 

gamma rhythm could be used as an indicative signal in brain-machine interface and can 

also be potentially useful in designing interactive computer games.  

 

5.16 Future directions 

I recorded neuronal response and LFPs from a large neural population extracellularly in 

vivo. However, although we are able to study simultaneously recorded neuronal response 

in a large network and compare its changes with LFP, our recordings cannot control for 

different neuron types in the network. With newly developed genetic tools, manipulating 

the activity of different subtypes of neurons in a neuronal network that give rise to the 

global gamma with (Fenno et al., 2011)  while recording large number of neurons 

simultaneously will allow us to study the cellular mechanism underlying global gamma 

generation in vivo.  
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Abstract  

Cerebral cortex is a hierarchical structure, with feedforward, feedback and horizontal 

connections. Understanding the function of feedback is critical to understanding 

information processing in the cerebral cortex. Feedback has been proposed to underlie 

perceptual grouping, figure-ground segregation, contour integration, visual attention, 

awareness and other forms of top-down regulation. However, compared with feedforward 

connections, most of these proposals are speculative and the functional properties of 

feedback are still unclear. The reciprocal connections between primary cortex (V1) and 

V2 make it an ideal system for this study because of the abundance of the connections 

and the relatively well-known neuronal properties. We recorded V1 neurons with multi-

electrode array while simultaneously microstimulating V2 neurons under different 

conditions. We found significant enhancement in the gamma power in V1 when 

stimulating V2 neurons which retinotopically overlapping. This effect is affected by 

stimulus size the contrast, and is laminar dependent in V2. Since feedback connections 

are weak and diffuse, I propose that feedback modulates neural activity by changing the 

relative gain of excitation and inhibition, which is reflected in changes in the gamma 

rhythm of the local field potential (LFP). 
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Introduction  

It is commonly accepted that cerebral cortex is organized in a hierarchical way (Felleman 

and Van Essen, 1991). Based on their laminar origin and termination, intercortical 

connections are generally categorized into feedforward, feedback and horizontal 

pathways (Rockland and Pandya, 1979).  

 

Histology and physiology have revealed some basic properties of feedback connections: 

1. Feedback connections originate in supragranular and infragranular layers in higher 

cortical areas and project to supragranular layers in earlier cortical areas (Felleman and 

Van Essen, 1991); 2. The neurons providing feedback are excitatory and synapse on 

pyramidal neurons (Angelucci et al., 2002b; Shao and Burkhalter, 1996; Shmuel et al., 

2005; Stettler et al., 2002); 3. Feedback connections generate smaller EPSPs compared 

with feedforward and horizontal connections (Shao and Burkhalter, 1996); 4. The 

conduction velocity of feedback is the same as the feedforward connections, about 3.5m/s 

(Girard et al., 2001); 5. Feedback connections are more diffuse than feedforward 

connections and form few (Angelucci et al., 2002b; Shmuel et al., 2005) or no clusters 

(Stettler et al., 2002) in the target region; 6. Feedback connections are as numerous as 

those in the forward direction (Stettler et al., 2002). In summary, feedback connections 

are weak, excitatory, fast, diffuse and extensive.  

 

Feedback is believed to be important for top-down attentional modulation, discriminating 

figure from ground (Lamme, 1995; Lamme et al., 1999; Lamme et al., 1998b, 2002), 

integrating collinear contours over large regions of visual space (Hess and Dakin, 1997; 
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Kovacs and Julesz, 1993; Lamme et al., 1993), assigning borders to objects (Qiu and von 

der Heydt, 2007; von der Heydt et al., 2005; Zhou et al., 2000) and generating surround 

suppression (Angelucci and Bressloff, 2006; Bair et al., 2003; Schwabe et al., 2006). 

These proposals are exciting but speculative, because most of them have been inferred 

from responses to different visual stimuli rather than based on direct measurement 

(Lamme, 1995; Lee and Nguyen, 2001).  

 

As a signal reflecting population activity, the LFP is in some cases more sensitive than 

spikes to changes in neural activity related to perception (Gail et al., 2004; Wilke et al., 

2006), movement intention (Donoghue et al., 1998; Pellerin and Lamarre, 1997; Rickert 

et al., 2005; Scherberger et al., 2005) and attention (Fries et al., 2001; Jensen et al., 2007). 

Because it arises from low-frequency extracellular currents that are thought to reflect 

synchronized synaptic activity, to understand the modulatory effects of feedback, I 

focused on changes in local field potential (LFP).  

 

We used the massive feedback projections between V2 and V1 as a model system. In the 

macaque monkey, V1 has been extensively studied and is relatively well understood. 

Visual area V2 is almost the same size as V1 and is reciprocally connected with V1 

(Felleman and Van Essen, 1991; Girard et al., 2001). The extensive feedback connections 

projecting from V2 to V1 make this an ideal system to study the properties of cortical 

feedback. The major obstacle in feedback research is that it is hard to measure and 

separate feedback from feedforward and horizontal effects, because feedback connections 

are diffuse with weak synaptic strength. Previous studies using cooling or lesions in V2 



258 
 

to silence feedback and showed a reduction in V1 tuning acuity, with no change in 

orientation preference (Merigan et al., 1993; Sandell and Schiller, 1982). However, the 

non-specific silencing of an entire cortical area and the low temporal resolution of these 

techniques make it hard to interpret the results.  

 

To solve this problem, I used electrical microstimulation in V2 while recording in both 

V2 and V1. Microstimulation is an effective technique for studying functional 

connectivity in vivo. It allows us to activate neurons in a temporally precise manner and 

directly activate neurons in a local region. This allows me to recruit the activity of a small 

neuronal population and to measure their effects on target neurons in V1. This makes it 

possible to assess the functional specificity of feedback effects in V1 and to detect direct 

feedback connections from V2 to V1. However, there are two major obstacles to study 

feedback with microstimulation. One is that it is hard to measure and separate feedback 

from feedforward and horizontal effects, because information is processed in a loop and 

feedback connections are diffuse with weak synaptic strength. The second problem with 

microstimulation is the possible recruitment of antidromic effects. Although we 

attempted to avoid V1 axons terminating in layer 4 of V2, we cannot rule out antidromic 

activity. Alternatively, the complementary approaches will be to make use of glutamate 

injection, uncaging glutamate with laser beam or optogenetics tools. 

 

In addition to the electrical microstimulation, I also used a more physiological approach. 

Illusory contours of the Kanizsa figures evoke strong responses in V2 but not in V1 (Lee 
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and Nguyen, 2001). I therefore used contour stimuli to drive V2 neurons strongly and 

evoke strong feedback to V1.  
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Method 

Animal preparation  

We recorded from 3 anesthetized, adult male macaque monkeys (Macaca fascicularis). 

Anesthesia was induced with ketamine (10 mg/kg) and maintained with isoflurane (1.5-

2.5% in 95% O2) during venous cannulation. The animal was then placed in a stereotax 

and anesthesia was provided by intravenuous infusion of sufentanil citrate (6-18 µg/kg/hr, 

adjusted as needed for each animal), in normosol with dextrose (2.5%). Vecuronium 

bromide (0.1 mg/kg/hr) was administered to suppress eye movements. Temperature was 

maintained at 36-37 C°. Physiological signs were monitored (electrocardiogram, blood 

oxygen level, end-tidal CO2, electroencephalogram, temperature, and urinary output and 

osmolarity) to ensure adequate anesthesia and animal well-being. A broad-spectrum 

antibiotic (Baytril, 2.5 mg/kg) and an anti-inflamatory steroid (dexamethasome, 1 mg/kg) 

were administrated daily. All procedures were approved by the Institutional Animal Care 

and Use Committee of the Albert Einstein College of Medicine at YeshivaUniversity and 

were in compliance with the guidelines set forth in the United States Public Health 

Service Guide for the Care and Use of Laboratory Animals. 

 

 

Electrical microstimulation 

We implanted multielectrode microarrays in the superficial layers in V1 (layer 2/3), while 

simultaneously placing multiple stimulating and recording electrodes in V2 

(interelectrode spacing of 300 microns). One pulse of biphasic electrical current with 

duration of 100 µs in each phase was delivered by a constant current source (STG 1001) 
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at the desired time point relative to visual stimulus onset. The amplitude of the electrical 

currents ranged between 30 µA to 100 µA. If not specified, the stimulated location is 

roughly layers 5/6 in V2, which we define as around 100-300 µm into V2, where neurons 

are supposed to project back to V1 layers 2/3.  

 

Visual stimuli 

Visual stimuli were generated with EXPO and presented on a CRT monitor (resolution 

1024 by 768 pixels; refresh rate 100 Hz) placed 110 cm from the animal. Because there is 

a higher probability of feedback connections between retinotopically overlapping regions 

in areas V1 and V2, we mapped the receptive fields by briefly presenting small, full 

contrast drifting gratings (0.6 degree; 250 ms duration) at different locations on the 

monitor. The spiking responses at each site were fitted with a 2D Gaussian to determine 

the receptive field location and extent.  

 

We used these measurements to center gratings on the aggregate receptive field. Visual 

stimuli consisted of sinusoidal gratings with a fixed spatial (1 cycle/degree) and temporal 

frequency (6.25 cycle/second) drifting at 4 directions (0, 45, 90 and 135 degree). In 

general, we used low contrast (contrast=0.33) drifting sinusoidal gratings to drive V1 

neurons to a moderate firing level, which allowed us to detect excitatory or inhibitory 

effects of the feedback induced by microstimulation. Microstimulation was delivered 300 

or 500 ms after stimulus onset if not specified (red arrow in Figure 1A). Visual stimuli 

were presented for 2 second with 1 second inter-stimulus interval. Control conditions, 
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which are same visual stimuli without microstimulation, are randomized with stimulation 

trials.  

 

Data analysis 

In general, data are analyzed in two different epochs: 100ms after stimulus onset till the 

time of microstimulation (pre epoch) and 100 ms after microstimulation till the end of 

stimulus presentation (post epoch). Identical epochs were used for control trials, as 

indicated by a grey box in Figure 1B. Since LFP power shows dynamics over time, I 

compared the LFP power on stimulated and non-stimulated (control) trials across the 

array by calculating the ratio between the power spectra of stimulation and control 

conditions (Figure 2A).  
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Results and discussion 

We used electrical microstimulation to activate V2 neurons that provide feedback 

projections to V1. Data reported here are form array implants in V1 from 4 hemispheres, 

two monkeys. I recorded spiking activity and local field potential (LFP) simultaneously 

from a large population of neurons in V1 to measure the impact of feedback.   

 

Spatial specificity of feedback effects in V1 

We found that single pulse of microstimulation in V2 can induce a strong facilitation in 

LFP power for gamma and higher frequencies relative to control trials (Figure 2A). 

Figure 2B plots the power ratio between stimulation and control in low frequency power 

(0-10Hz) and high gamma frequencies (80-120Hz) according to the electrode location on 

one example array in V1 for 4 different stimulus orientations. Both low frequency and 

high gamma power showed inhomogeneous distribution of changes in power. This result 

suggests that there could be a spatial specificity of the microstimulation effect on V1 LFP 

power.    

 

Location specificity of feedback effects in V2 

We compared the effects of stimulating at different locations in V2. The three electrodes 

shown in Figure 3A are at roughly the same nominal depth in V2, and spaced 

horizontally over a distance of 900 microns. We found that the stimulation location in V2 

could influence the change in LFP power in V. To optimize our stimulation protocol, we 

compared the power ratio with or without stimulation with different amplitudes of 
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electrical stimulation current. Figure 3A showed that effect of stimulation saturate with 

100 µA current. The largest change in power is induced by 60 µA stimulation.  

 

Feedback projections are laminar specific (Felleman and Van Essen, 1991). We used this 

to evaluate the specificity of electrical stimulation in V2. We stimulated at different depth 

in V2 while monitoring the change in LFP power in V1. On one electrode (E1), we 

stimulated at 5 different depths with 200-300 microns spacing in V2. On average, we 

found that the power ratio changes for the first site and second to last site were very 

similar: both showed suppression in the low frequency power and facilitation in higher 

frequency power. On the contrary, the two depths in the middle showed suppression for 

higher frequency power as well as the last site. This result suggested that only when 

stimulating the infragranular and supragranular layers, which are the output layers in V2, 

can we get enhanced higher frequency power in V1. Stimulating at depths around the 

granular layer (input layer) in V2, had opposite effects. This result suggests that the 

power spectra changes we observe in V1 are specific to stimulating neurons that project 

to V1 instead of neurons that receive feedforward connections from V1. 

 

Comparison for different contrasts and sizes 

Feedback effects have been proposed to be modulatory, but how this input affects the 

balance of excitation and inhibition in the target area is unclear. Gamma power requires 

activation of inhibitory network (Bartos et al., 2007) and the monotonic enhancement of 

gamma power with enlarging size suggest that its power mainly reflects the strength of 

network inhibition. Moreover, there are physiological evidence showing the balance 
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between excitation and inhibition could be altered by stimulus size (Haider et al., 2010). 

Therefore, we used two different visual stimuli to alter the balance between network 

excitation and inhibition: one is stimulus contrast and the other is stimulus size.  

 

We found that the increase of gamma power with stimulation was higher for low contrast 

(0.33; thin black line) compared to high contrast (0.67; wide black line; Figure 5A) 

stimuli, indicating that feedback is stronger when the network is less active, meaning less 

excitation and inhibition. The size comparison revealed that microstimulation in V2 

enhanced gamma and higher frequency power in V1 when the network was driven with a 

small grating, but reduced gamma and higher frequency power when activity was driven 

with a large stimulus (Figure 5B). This suggests that when the network is dominated by 

excitation, feedback induces stronger inhibition, but when the network is already strongly 

suppressed, feedback connections will reduce inhibition. However, this conclusion is 

speculative and requires further experimental validation. 

 

Time of electrical stimulation relative to stimulus onset alters dynamics of firing rate in 

V1 

It has been suggested that the feedback effect is delayed relative to the response latency 

of neurons to response onset in lower visual cortex (Webb et al., 2005). We recruited 

feedback by stimulating V2 neurons with different delays relative to stimulus onset. 

Figure 6 illustrates the firing rate evoked by a low contrast large grating combined with 

either no stimulation or microstimulation applied with different delays. When stimulation 

was applied simultaneously with stimulus onset (0 ms), the response onset is earlier than 
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under the control condition. When microstimulation is applied 50 ms after stimulus onset, 

the response was delayed compared to control. As expected, when stimulation occurs 500 

ms after the presentation of the visual, there is no effect on response latency and the time 

course is similar to control condition.  

 

Correlation between V1 and V2 neurons to illusory contour 

We also tried complicated visual stimuli that supposed to drive V2 neurons more than V1 

neurons to study the effect of feedback without microstimulation. The stimulus we used 

are adapted from Lee and Nguyen (Lee and Nguyen, 2001), which are shown in Figure 

7A. The V2 neurons we recorded from in this experiment are roughly in layers 5/6. To 

calculate correlation between V1 and V2 neurons under different conditions, we 

calculated the average crosscorrelograms (CCGs) between V1 and V2 neuron pairs for 

different corresponding conditions (Figure 7B) and noise correlation (rsc) between V1 and 

V2 neurons. We did see a tendency of illusory contour to elicit stronger correlation 

between V1 and V2 neurons than control conditions. However, we have collected very 

limited data set with overlapping receptive fields between V1 and V2, which makes it 

hard to generate a conclusion. 

 

In summary, our preliminary results indicate that the effect induced by microstimulation 

in V2 causes a weak and specific enhancement of LFP gamma band power, although very 

low frequency bands of the LFP show a decrease in power. This effect is dependent on 

horizontal and laminar location of the V2 stimulating site. The effects of feedback depend 

on the original balance between excitation and inhibition driven by visual stimuli and its 
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timing relative to visual stimulus onset. These results suggest that the modulatory effect 

of feedback could alter balance between excitation and inhibition depending on visual 

stimuli and may be more specific than previously thought.  
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Figure legends 

 

Figure 1 Illustration of experiment methods. (A) Illustration of visual stimuli and the 

onset of electrical stimulation (red arrow). (B) LFPs averaged across trials to show the 

duration of the stimulation artifact. The gray area indicates the time epoch 100ms after 

stimulation, which is used for comparison of LFP power between stimulation and control 

conditions. (C) Power spectra of the post stimulation epoch for microstimulation and 

control conditions. 
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Figure 2 Effect of feedback on LFP power. (A) Ratio of power between stimulation and 

control conditions from an example electrode. (B) Average power ratio for low frequency 

(0-10Hz) and high gamma frequency (80-120Hz) plotted according to the electrode 

location in V1.  
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Figure 3 Effect of feedback on LFP power depends on the amplitude of current and 

electrode location. (A) Ratio of power between stimulation and control conditions. 

Average for one V1 array for different stimulating electrodes (contrast=0.33, current = 

100 µA, stimulating 300ms after visual stimulus onset). (B) Power ratio for different 

amplitude of stimulation current (contrast=0.33, stimulating 300ms after visual stimulus 

onset).  
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Figure 4 Laminar specificity of feedback effect. Power ratio in V1 organized as a 

function of depth of the stimulating electrode in V2.  
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Figure 5 Effect of feedback on LFP power depends on stimulus contrast and size. (A) 

Ratio of power between stimulation and control conditions average for one V1 array for 

different visual stimulus contrasts (current = 30 µA). (B) Ratio of power for different 

amplitudes of stimulation current (contrast=0.67, current = 100 µA).  

 



0 250 500
0.7

1

1.3

Frequency (Hz)

 

Contrast = 0.33
Contrast = 0.67

Note: Electrode 7, current = 30 µA

0 250 500
0.9

1

1.1

Po
w

er
 ra

tio
 (p

os
t M

C
st

im
/p

os
t c

on
tro

l)

 

size = 512 pixel
size = 171 pixel

Note: current = 100; position = 3.3 mm

A

B

Contrast comparison

Size comparison (contrast = 0.67)

Frequency (Hz)

Po
w

er
 ra

tio
 (p

os
t M

C
st

im
/p

os
t c

on
tro

l)

277



278 
 

Figure 6 Changes in response latency with time of microstimulation relative to visual 

stimulus onset.  
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Figure 7 Effect of illusory contour on V1-V2 neuronal correlation. (A) Illustration of 

different contour and control stimuli. (B) V1-V2 CCGs for different stimulus conditions. 

(C) Noise correlation for different stimulus conditions.  
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Appendix IV: Laminar dependence of neuronal correlations in visual 

cortex (submitted manuscript) 
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ABSTRACT 
 Neuronal responses are correlated on a range of timescales. Correlations can affect population coding and may play an important role in cortical function. Correlations are known to depend on stimulus drive, behavioral context, and experience, but the mechanisms that generate and control their strength and properties are poorly understood. Here we make use of the laminar organization of cortex—with its variations in sources of input, local circuit architecture, and neuronal properties—to test whether networks engaged in similar functions but with distinct properties generate different patterns of correlation. We find that slow timescale correlations are prominent in the superficial and deep layers of primary visual cortex (V1) of macaque monkeys, but are near zero in the middle layers. A similar pattern is seen in the low-frequency (0-10 Hz) power of the LFP, which is weakest in the middle layers. Fast timescale correlation, or synchrony, differs in its laminar dependence: it is maximal in the middle layers of V1, although evident at most cortical depths. The gamma (30-50 Hz) power of the LFP follows a similar trend. To test whether these patterns hold in extrastriate cortex, we performed additional recordings in area V2, targeting the input layers. We found a laminar dependence similar to V1 for synchrony, but slow timescale correlations were not different between the input layers and nearby locations. Our results reveal that cortical circuits in different laminae can generate remarkably different patterns of correlations, despite being tightly interconnected.     



 

3  

The responses of cortical neurons are not independent. Fluctuations in responses – either in spike timing or count – are shared between nearby neurons and those with similar functional properties. These correlations can strongly affect population coding. In a pooled population signal, correlations reduce signal-to-noise since shared fluctuations cannot be averaged away (Zohary et al., 1994). Under other scenarios, correlated variability can either improve or reduce population encoding (Averbeck et al., 2006) and decoding performance (Graf et al., 2011). Spike timing correlation on briefer timescales (synchrony) has been suggested to underlie the binding of distributed sensory representations (Gray, 1999), and the temporal coordination of activity by gamma rhythms suggested to influence corticocortical communication and the dynamic routing of information through cortical circuits (Fries, 2009).  A simple explanation for correlations is that they arise when cells receive common input from a presynaptic neuron or pool of neurons. However, modeling work has shown that correlations can be near zero, even in highly recurrent networks, if excitatory and inhibitory inputs are balanced appropriately (Salinas and Sejnowski, 2000; Renart et al., 2010). The relationship between correlations and patterns of synaptic input is thus not straightforward. More generally, how correlations depend on network architecture and the intrinsic properties of neurons remains unclear, an issue that must be addressed if we are to understand why correlations vary across brain areas, stimulus conditions and behavioral states (see Cohen and Kohn, 2011).  The laminar organization of cortex provides an opportunity to compare correlations in networks engaged in similar computations but with distinct properties. First, circuit architecture differs among layers. For instance, the middle layers (layers 4C alpha and beta) of primary visual cortex (V1) are driven by feedforward input from the thalamus, and have recurrent circuitry of a limited spatial extent (Lund et al., 1979; Blasdel and Lund, 1983). Signals are then relayed to the superficial and deep layers, where neurons are richly interconnected, in part by horizontal connections known to extend for several millimeters (Gilbert and Wiesel, 1983; Ts'o et al., 1986; Gilbert and Wiesel, 1989). Second, the electrophysiological properties of neurons and synapses differ among layers, due to the expression of different configurations of receptors and ion channels (Markram et al., 2004; Nelson et al., 2006; Thomson and Lamy, 2007). Finally, different layers generate different rhythmic fluctuations, which are observable in the local field potential (LFP; Bollimunta et al., 2008; Maier et al., 2010) and may contribute strongly to correlations (Kohn et al., 2009).  To determine whether different laminar circuits give rise to neuronal correlations with distinct properties, we recorded from groups of neurons in V1 of macaque monkeys at locations sampled systematically across the cortical depth. To relate our findings to network rhythms, we also recorded the LFP and compared its power in different laminae. To test whether the laminar differences in V1 correlations reflect universal properties of visual cortical networks, we performed similar measurements in area V2. We find that the strength and properties of neuronal correlations can be remarkably different in nearby and interlinked cortical circuits.  This work has been published previously in abstract form (Smith and Kohn, 2009). 
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MATERIALS AND METHODS 
 
General methods 
 We recorded data from 6 anesthetized, adult male macaque monkeys (Macaca fascicularis). The techniques we use have been described in detail previously (Smith and Kohn, 2008). In brief, anesthesia was induced with ketamine (10 mg/kg) and maintained during preparatory surgery with isoflurane (1.0-2.0% in 95% O2). Anesthesia during recordings was maintained with sufentanil citrate (6-18 μg/kg/hr, adjusted as needed for each animal). Vecuronium or pancuronium bromide (0.1-0.15 mg/kg/hr) was used to suppress eye movements. Drugs were administered in normosol with dextrose (2.5%) to maintain physiological ion balance. Physiological signs (ECG, blood pressure, SpO2, end-tidal C02, EEG, temperature, and urinary output and osmolarity) were monitored to ensure adequate anesthesia and animal well-being. Temperature was maintained at 36-37 C°. The pupils were dilated with topical atropine and the corneas protected with gas-permeable hard contact lenses. We used supplementary lenses to bring the retinal image into focus. At the end of the recording session, animals were sacrificed with sodium pentobarbital (65 mg/kg) and perfused with phosphate buffer solution followed by formalin. Tissue was processed histologically to verify recording locations (see also below).  
 All procedures were approved by the Institutional Animal Care and Use Committee of the Albert Einstein College of Medicine at Yeshiva University and were in compliance with the guidelines set forth in the United States Public Health Service Guide for the Care and Use of Laboratory Animals. 
 We recorded with a group of 5-7 linearly arranged (305 μm spacing) platinum-tungsten electrodes, which consisted of both conventional electrodes and tetrodes (Thomas Recording, Giessen, Germany). In V1, we inserted recording electrodes normal to the cortical surface within a craniotomy centered 10 mm lateral to the midline and 5 mm posterior to the lunate sulcus, where neuronal receptive fields are within 5˚ of the fovea. The electrodes were aligned using a microscope to the end of the guide tube, and advanced together through cortex, sampling in 200 μm intervals until all electrodes had exited into white matter.   V2 recordings were performed by angling the electrodes 20° from vertical, in the sagittal plane, and advancing through V1 into the white matter. Entry into the deep layers of V2 was apparent from the reappearance of neuronal signals. We advanced the electrodes roughly 700 μm into cortex and began recording. We sampled 3-5 depths (approximately 200 μm spacing) which spanned the layers receiving input from V1 (Van Essen et al., 1986; Rockland and Virga, 1990). V2 recordings were performed while monitoring the activity of a population of neurons in the superficial layers of V1, using microelectrode array recordings (described in Smith and Kohn, 2008).   Signals from the electrodes were bandpass filtered between 0.3 and 10 kHz and sampled at 40 kHz. Waveform segments that exceeded a user-defined threshold were stored for offline 
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analysis and sorting (Offline Sorter; Plexon; Dallas, TX). An initial sort was performed using the “T-Distribution E-M” automated sorting mode, which was then refined by hand, taking into account the waveform shape, clustering in principle component space and interspike interval distribution.   We quantified sort quality using the signal to noise ratio (SNR) of each candidate unit, defined as the ratio of the average waveform amplitude to the SD of the waveform noise (Kelly et al., 2007). We started with 685 candidate units in V1 and 647 in V2. Candidates with a SNR less than 2.3 were discarded as multi-unit recordings (215 V1 and 347 V2 units removed). We also eliminated neurons for which the best grating stimulus did not evoke a response of at least 2 spikes/s (69 V1 and 94 V2 units removed). The remaining candidate waveforms (401 units in V1 and 206 in V2) were deemed to be of sufficient quality and visual responsiveness to warrant further analysis. Changing the SNR or responsivity threshold did not qualitatively change any of the results described herein. In addition, the mean SNR was similar across layers (mean of 3.29, 3.43, and 3.26 in the superficial, middle and deep layers, respectively, p > 0.30 for all comparisons).  At each recording site, we also acquired the local field potential (LFP) by band-pass filtering the raw signal between 0.3 Hz and 250 Hz and sampling at 1 kHz. For tetrodes, we acquired the LFP from only one of the four contacts.   
Visual stimulation  Visual stimuli were generated using EXPO (corevision.cns.nyu.edu) and displayed on a linearized CRT monitor (mean luminance 40 cd/m2) with a resolution of 1024 by 768 pixels and a refresh rate of 100 Hz. The monitor was placed 110 cm from the animal. Stimuli were presented in a circular aperture surrounded by a gray field of average luminance. We mapped the spatial receptive field of units on each electrode by presenting small, drifting gratings (0.6 degrees; 250 ms duration) at a range of spatial positions. We centered our stimuli on the aggregate receptive field of the recorded units. Stimuli were viewed binocularly and presented for 1.28 seconds, separated by 1.5 s intervals during which we presented an isoluminant gray screen (except in one penetration, where we used an interval of 10 s). We presented full-contrast drifting sinusoidal gratings at 8 or 12 orientations spaced equally (30˚ or 45˚ increments). The spatial frequency (1-1.3 cpd) and temporal frequency (3 or 6.25 Hz) values were chosen to correspond to the typical preference of parafoveal V1 neurons (De Valois et al., 1982; Foster et al., 1985; Smith et al., 2002). The position and size (3.9–5.3˚) of the grating were sufficient to cover the receptive fields of all the neurons. Stimulus orientation was block randomized, and blocks were repeated 30-100 times.  
Measures of correlation  A detailed discussion of the measures of correlation can be found in previous publications (Kohn and Smith, 2005; Smith and Kohn, 2008). Briefly, rsc, or spike count correlation, is the Pearson correlation coefficient of the spike counts of two cells to repeated presentations of a particular stimulus – it captures shared trial-to-trial variability. For each 
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stimulus orientation, we Z-scored the responses and calculated rsc after combining responses to all stimuli. We removed trials on which the response of either neuron was > 3 SDs different from its mean (Zohary et al., 1994) to avoid contamination by outlier responses.   To measure spike timing correlations, we computed the spike train cross-correlogram (CCG; Perkel et al., 1967), normalized by the geometric mean spike rate. We computed the CCG of each stimulus condition and corrected it using an all-way shuffle correction. To isolate the narrow peak of the CCGs we used a jitter correction method (Harrison et al., 2007; Smith and Kohn, 2008; Harrison and Geman, 2009) with a window of 10 ms, removing all correlation on a timescale greater than that window size. We then averaged CCGs across stimulus condition. We smoothed these CCGs with a Gaussian kernel (SD=1.0 ms) before using them in further analysis. 
 
Determining recording locations  Although we took care to align our electrodes and determine carefully their entry into the brain, we could not prevent slight deviations in alignment across depths, due to variations in the cortical surface, a penetration angle that was not precisely perpendicular to cortex, imprecision in the microdrive motor, and other factors. To be certain of the recording locations we therefore performed current source density (CSD) analysis (Nicholson and Freeman, 1975). Although CSD analysis is typically performed on data recorded simultaneously across cortical layers, this is not required, as the analysis is based on signals that are averaged across trials.   We computed the average, evoked (stimulus-locked) LFP at each site, smoothed these signals across sites, and then calculated the second spatial derivative, as in Stoelzel et al. (2009). We used CSD analysis for two purposes. First, we used it to determine which electrode penetrations were well aligned. We computed the Pearson’s correlation between the CSD values of each pair of electrodes. We only kept pairings for which this value was 0.5 or larger, indicating similar profiles. Second, we used the CSD profile to determine the location of the middle layers, which are distinguishable by the presence of a distinct current sink/source (Givre et al., 1995; Schroeder et al., 1998; Rajkai et al., 2008; Maier et al., 2010; 2011). We first averaged the CSDs from all aligned electrodes recorded on a single penetration and then determined the minimum value of the CSD in the first 100 msec. We defined the middle layer sink to be the depth and time that first reached 40% of that value, if this was followed by a source (defined as a signal that was at least 50% of the maximum CSD value and that occurred within 100 ms of the sink). We only accepted for analysis penetrations in which this method provided a clear assignment of the middle layers.  Using the 401 recorded V1 units, we paired each neuron with all other simultaneously recorded neurons, excluding pairs from the same electrode or tetrode. This resulted in 2369 pairs. Based on the CSD similarity criterion described above, we eliminated 478 pairs. We also discarded the data from a depth in which we only recorded 11 pairs (1200 μm above the middle layers) and a depth in which we recorded some individual neurons but 
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no pairs that met our criteria (1000 μm below the middle layers). Our final data set thus consisted of 1880 pairs of V1 neurons recorded from 19 electrode or tetrode tracks, grouped in 4 ensemble penetrations. 
 In 2 of the 4 penetrations, we made electrolytic lesions (2 µA for 5-10 s) at the last recording sites and 250 μm deeper, in white matter. We did not make lesions in the middle layers as we did not want to alter responses at deeper sites in the same penetration. We recovered a subset of the lesions, which were consistently at the expected location (an example is shown in Fig 1B).  For our analysis of LFP power, we simply aligned the recordings on different electrodes based on depth identified as the middle layers from the CSD on each electrode. This is because our analysis of LFP power did not require computing quantities across electrodes. We used LFP signals acquired from all depths at which we recorded single neurons that met the above criteria. We evaluated differences in the raw amplitude spectrum. Normalizing the spectra from individual sites before analysis provided qualitatively similar results. 
 In V2, we employed a different strategy to align the electrodes and to identify the input layers. We paired our V2 recordings with simultaneous recordings from neurons in the superficial layers of V1 with retinotopically-aligned receptive fields. We calculated CCGs between every pairing of V1 and V2 neurons and averaged across all conditions and pairs. We defined the input layers to be those V2 sites at which we observed evidence that neurons received direct input from V1 (Tanaka, 1983; Reid and Alonso, 1995): namely, that the average jitter-corrected CCG had a significant peak (5 standard deviations above the value at time lags of ±75-125 ms). These locations were typically 800-1000 μm from our entry into V2 at the layer V1/white matter border. V2 recording sites were defined to be deep/superficial, if the average CCGs lacked a sharp peak and these sites were recorded before/after an input layer site. Penetrations in which sharp peaks were not observed were not analyzed further. Before computing correlations, we applied the same rate and sort quality criteria as for our V1 data.   All indications of variation in the graphs and text are standard errors of the mean (s.e.m). The statistical significance of all results was evaluated with two-tailed t-tests, unless otherwise noted. Significance of rsc was assessed after applying the Fisher Z-transform to the data. 
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RESULTS  We recorded 1880 pairs of V1 neurons, using linear arrays consisting of 5-7 electrodes and tetrodes (305 micron spacing) inserted normal to the cortical surface (Fig 1A). The electrodes were aligned at their entry into the brain, and then advanced until we observed neuronal spiking activity. We recorded at that position and every 200 um thereafter, until the electrodes reached white matter (Fig 1B) FIGURE 1 ABOUT HERE 
The dependence of correlations on cortical layer  Along with spiking activity, we simultaneously recorded the local field potential (LFP) from each electrode. We used these signals to compute the laminar current source density (CSD) profile, which measures the location, direction and strength of current flow (Fig 1C). In this plot, sinks and sources of current flow are shown in red and blue, respectively. The earliest sink is found in layer 4C, reflecting the arrival of input from the lateral geniculate nucleus (LGN), and activation in superficial and deep layers follows (Givre et al., 1995; Schroeder et al., 1998; Rajkai et al., 2008; Maier et al., 2010; 2011). We identified the depth at which the earliest sink was present (Fig 1C, dashed circle), and designated that as the input or middle layers of V1 (see Methods). The sink was usually confined to 1-2 recorded depths, consistent with the known thickness of layer 4C in the macaque (300-400 μm, Lund, 1988). FIGURE 2 ABOUT HERE To determine whether spike count correlations (rsc, also known as noise correlations or correlated variability) are laminar dependent, we calculated values between all pairs of neurons recorded at each depth, using spike counts measured in 1.28 s trials. Figure 2A shows the average rsc values for neuronal pairs grouped by recording depth (number of pairs is indicated above each bin). We found substantial variation in rsc, with higher values in the superficial (depths of -1000 to -200 microns relative to the middle layers) and deep layers (depths of 200 to 800 microns) and lower values in the middle layers. We then divided the data into three groups—superficial, middle, and deep—based on depth (Fig 2B).  The rsc values were highest in the superficial layers (peak of 0.125 ± 0.011 at 400 μm above the middle layers, mean of 0.104 ± 0.006, n = 965). In the deep layers, rsc was slightly weaker on average (peak of 0.109 ± 0.010 at 400 μm below the middle layers, mean of 0.070 ± 0.008, n = 656), due to a drop in strength at the deepest recording sites, presumably in layer 6. The value of rsc in the middle layers was notably lower, with values not significantly different from zero (0.016 ± 0.013, n = 259, p=0.24). All of the differences between groupings were statistically significant (p<0.001). Data from individual penetrations were consistent with the trends in the population average, but more variable due to a lower number of observations at each depth. FIGURE 3 ABOUT HERE To explore the laminar dependence of spike timing correlations, we computed shuffle-corrected cross-correlograms (CCGs) for the same pairs of neurons. At each depth we averaged the CCG from all pairs to produce a grand average for that depth (Fig 3A). Since rsc is proportional to the integral of the shuffle-corrected CCG (Bair et al., 2001), the laminar dependence of rsc should be reflected in the CCGs. Consistent with this, CCGs in the superficial and deep layers had broad peaks, and these were more prominent in the superficial layers. CCGs in the middle layers lacked broad peaks, but showed oscillatory 



 

9  

side lobes (arrows) around the peak. We quantified the gamma power in the CCG (30-50 Hz, calculated from the full shuffle-corrected CCG within ±100 ms of zero time lag), for each pair of neurons, and found significantly more power for the middle layers than the superficial (p=1.8x10-7) and deep (p=1.5x10-4) layers. Low frequency power (0-10 Hz, calculated from the full shuffle-corrected CCG over all time lags), on the other hand, was higher in the superficial (p=0.034) and deep (p=0.014) layers than the middle layers, consistent with the broad peak evident at many locations in those layers.  To measure precise timing correlation or synchrony, we computed jitter-corrected CCGs (see Methods; Smith and Kohn, 2008). This correction removes all correlations in the CCGs on timescales larger than the jitter window (in this case 10 ms), thus isolating synchronous activity from more loosely coordinated activity. Laminar differences were less distinct than for rsc, but the most prominent peaks in the average CCGs were in the middle layers (Fig 3B, note change in scale). We quantified the synchrony in the CCG by measuring the area under the CCG within ± 5 ms of zero time lag. This value was slightly higher in the middle layers (8.8x10-4 coinc./sp.) than in the superficial layers (6.1x10-4 coinc./sp., p=0.05) or deep layers (7.2x10-4 coinc./sp., p=0.33).  
Effects of rate and tuning similarity on rsc  When the firing rate of either neuron in a pair is low, rsc will be small, even when the underlying membrane potentials are strongly correlated (de la Rocha et al., 2007; Cohen and Kohn, 2011). One possible explanation for the laminar variation in rsc could thus be laminar differences in firing rate. We therefore compared the dependence of rsc on firing rate for pairs of neurons in the middle layers with those in all other layers. For this analysis, we computed rsc for each stimulus and pair separately. Figure 4A shows the average rsc values plotted as a function of the firing rate of each neuron in each pair, in the superficial and deep layers. The value of rsc was higher when both neurons fired at a higher rate (upper right corner). In the middle layers, rsc was small even when both neurons fired at high rates (Fig 4B). Considering only cases in which both neurons had a mean firing rate of at least 5 sp/s, rsc in the middle layers was -0.015±0.031 compared to 0.116±0.009 in the other layers (p=3.3x10-6). We also compared mean firing rates across layers, but found no trend that could explain the laminar variations in rsc, except at the most superficial sites (depths of -1000 and -800 µm) where there was a clear decrease in rate. In fact, firing rates were slightly higher in the middle layers when compared with the superficial and deep layers (13.1 vs. 9.5 sp/s, p=0.025), consistent with previous studies (Gur et al., 2005). We conclude that differences in firing rate cannot explain the small values of rsc in the middle layers. FIGURE 4 ABOUT HERE Correlations are stronger between neurons with similar response properties (Zohary et al., 1994; Bair et al., 2001; Kohn and Smith, 2005; Smith and Kohn, 2008). Thus, a second explanation for the low values of rsc in the middle layers is that the sampled neurons have more diverse functional properties than those sampled in other layers. We did not fully characterize the receptive field properties of the recorded neurons, so we could not provide a thorough account of their similarity. However, we did compare the similarity of orientation tuning between pairs of cells, quantified by the Pearson's correlation (signal 
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correlation). Signal correlations for the middle layers (0.026±0.023, n = 259) were only slightly smaller than at other sites (0.066±0.011, n=1621, p=0.21). Further, even among pairs with high signal correlation (>0.5), indicating quite similar tuning, rsc was low in the middle layers (0.050±0.036, n=33, compared to 0.121±0.011 in other layers). Note that although rsc was weak in the middle layers, values were larger for pairs with similar tuning (0.050 compared to 0.016 on average), consistent with the "limited-range" dependence seen in the superficial layers (Smith and Kohn, 2008). We conclude that the low rsc we observe in the middle layers is unlikely to be due to lower signal correlations among the sampled neurons.   
Laminar trends in the LFP  Low frequency cortical rhythms are thought to contribute to slow timescale correlations (Kohn and Smith, 2005; Poulet and Petersen, 2008; Smith and Kohn, 2008; Kohn et al., 2009; Mitchell et al., 2009; Kelly et al., 2010), whereas higher frequency rhythms (e.g.  gamma) have been associated with spike timing correlations (Samonds and Bonds, 2005; Fries et al., 2008). We therefore determined whether the laminar dependence of rsc and timing correlations were also reflected in the LFP. FIGURE 5 ABOUT HERE We measured the power of the LFP for frequencies from 0-80 Hz, and found substantial laminar variation. Low frequency (0-10 Hz) power was most prominent in the superficial and deep layers, and substantially weaker in the middle layers (Fig 5A and C), although this trend was not statistically significant because of reduced power for very superficial recordings (p=0.11 for the difference between middle and all other layers).  For gamma frequencies (30-50 Hz), power was highest in the middle layers (Fig 5B and D; p=0.011 for difference between middle and all other layers). Note that in these experiments we used gratings of an intermediate size (3-5 degrees); gamma power is higher for larger stimuli and may display a different laminar pattern under those conditions (Gieselmann and Thiele, 2008; Jia et al., 2011).  To quantify the relationship between LFP power and spiking correlations, we compared the average power measured from the same electrode pairings used to compute rsc. Across pairings, rsc was correlated with low-frequency (r=0.12, p=4.8x10-7) but not gamma power (r=-0.02, p=0.44). Synchrony showed the opposite trend – the area under the CCG was correlated with gamma (r=0.21, p=1.4x10-19) but not low-frequency power (r=0.03, p=0.22).   We conclude that, like rsc and synchrony, LFP frequency content is laminar dependent. Low frequency fluctuations are weakest in the middle layers, where rsc is near zero, and elevated in the superficial and deep layers. Gamma power, on the other hand, peaks in the middle layers, where we observed the strongest synchrony as well as the most gamma power in the CCG. However, the correspondence between the properties of the LFP and spiking correlations is not absolute: low frequency power was strong at the deepest recording sites where rsc had an intermediate strength.   
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Laminar trends outside V1  Our finding that rsc is weak in the middle layers of V1 may represent a general principle that the circuits in the input layers are designed to minimize slow timescale correlations.  Alternatively, this finding may represent a specialization of V1; for instance, because it is driven directly by the thalamus or because of neural architecture unique to layer 4C. To test whether inputs layers in extrastriate cortex have similarly weak values of rsc, we targeted these layers in additional recordings performed in V2 (7 electrode penetrations in 4 animals).   Because CSD analysis and its relationship to input layers is less well-established in extrastriate cortex, we used an alternative strategy for determining the location of the inputs layers from that used in our V1 recordings: we measured directly whether a particular location in V2 received input from V1 by pairing our V2 recordings (made with 5-7 microelectrodes or tetrodes, advanced as a group) with microelectrode array recordings in the superficial layers of V1. In a small proportion of V1-V2 pairs (~1%), we observed sharp peaks in the CCG that were offset by 2.2 ms, on average, indicating that the V2 cell had an enhanced probability of spiking after a V1 spike with this delay (Zandvakili and Kohn, 2010). These peaks were observed only when the spatial receptive fields were precisely aligned, with a center-to-center spacing of less than 1 degree. The average jitter-corrected V1-V2 CCGs for 4 recording sites sampled sequentially in a single penetration are shown in Fig 6A. At deep (top) and superficial (bottom) sites, CCGs did not have sharp peaks. At intermediate locations—typically at one or two sites—sharp peaks were evident. We interpret these peaks as indicating a functional connection from V1 to V2 (see Reid and Alonso, 1995, for a related approach) and defined those sites at which we observed a sharp peak in the average V1-V2 CCG (across all pairs and stimulus orientations) as being in the input layers of V2.  FIGURE 6 ABOUT HERE We then measured correlations among V2 pairs recorded simultaneously at each depth. In contrast to our observations in V1, we found no trend for rsc to differ significantly across layers (Fig 6B). In layers with sharp peaks, the mean rsc was 0.157±0.014, while in superficial and deep layers it was 0.142±0.021 and 0.120±0.030, respectively (p>0.2 for all comparisons). Thus, rsc in the input layers of V2 is similar to that observed in other layers. Consistent with this, low frequency(0-10 Hz) LFP power recorded from the same electrodes was slightly higher in the input layers than other layers (p=0.03, data not shown).   We also compared the laminar dependence of spike timing correlations for V2-V2 pairs (Figure 6C). We found broad peaks in shuffle-corrected CCGs at all three locations (data not shown). As in V1, synchrony was stronger in the input layers than in nearby locations (p=0.08 for comparison with superficial layers, and p=0.05 for the deep layers, based on the area within ±5ms of zero lag in the jitter-corrected CCG). LFP gamma power was also maximal in the input layers, although this trend was not statistically significant (p=0.10, data not shown).   
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Our data do not provide a full characterization of the laminar dependence of correlations and LFP power in V2. Further, our method for determining the input layers may have misassigned recording sites to the superficial or deep layers if the number of functionally-connected V1-V2 pairs was low. Nevertheless, these data show clearly that the low values of rsc and low-frequency LFP power observed in the middle layers of V1 are not evident in the V2 layers receiving the strongest input from V1. Thus, we conclude that it is not a universal principle that input layers of cortex show weakly correlated responses. Spike synchrony and gamma LFP power, on the other hand, were elevated in the input layers of V2 (as in V1), suggesting this property might be shared across cortical areas. 
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DISCUSSION   We have shown that correlations vary significantly among layers in V1. Spike count correlations are prominent in the superficial and deep layers, but near zero in the middle layers. The laminar dependence of rsc in V1 was reflected in the broad peak of the CCG and in the low frequency power of the LFP, both of which were weak in the middle layers. Fine timescale correlations, on the other hand, were evident in all cortical layers but slightly stronger in the middle layers, where gamma LFP power was also most elevated. In V2, rsc in the input layers was similar to nearby layers, but synchrony was elevated, as in the middle layers of V1. Our results show that cortical layers can display distinct patterns of correlations, despite strong interlaminar circuitry linking them together. This indicates that the local network properties are a critical factor in determining the strength of correlations in neuronal populations.  
Relation to previous studies  Previously we have reported that correlations on fast and slow timescales have a different stimulus dependence (Kohn and Smith, 2005) and spatial extent (Smith and Kohn, 2008). We show here that correlations vary in different ways among layers in V1 for different timescales. We are aware of only two previously published studies that compared correlations across cortical layers. The first compared rsc in the superficial and deep layers of rat auditory cortex, and found a similar strength but different spatial extent (Sakata and Harris, 2009). It did not target the middle layers, where we find the most striking differences. The second study focused on synchrony, which was weakest in the middle layers of rat somatosensory cortex (Zhang and Alloway, 2004), unlike our findings in primate V1.   In the visual system, rsc is typically found to be in the range of 0.1-0.2, for neurons that are well-driven and responses that are measured over hundreds of milliseconds or seconds (see Cohen and Kohn, 2011, for review). A notable exception is a recent study which reported rsc values of ~0.01 in V1 of awake, fixating macaques (Ecker et al., 2010). The authors propose this discrepancy reflects a host of artifacts in all previous studies. Our findings offer an alternative explanation – that their recordings were biased toward the input layers of V1, as in a previous study by the same group (Berens et al., 2008). More broadly, the laminar trends in correlations that we observe point to an important source of potential variation in measurements, and a critical variable to control in future studies. We note that weak correlations have been reported in the motor cortex (Averbeck and Lee, 2006; Stark et al., 2008), further emphasizing that cortical circuits can generate different strengths of correlations. 
Mechanisms  Previous studies have established that correlations depend on the strength of neuronal responses, the time epoch over which they are measured, the distance between recorded neurons, the quality of spike isolation and sorting, and the tuning similarity of the constituent neurons (see Cohen and Kohn, 2011, for review). The laminar differences in V1 
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rsc values cannot be ascribed to any of these factors. In the middle layers, rsc was low even between the most responsive neurons, and the firing rates there were higher on average than in the superficial and deep layers. We counted spikes over the same epoch and, in each penetration, measured responses under identical stimulus conditions in all layers. The distance between recorded pairs was the same in all layers, as we recorded at all sites using the same array of electrodes, inserted normal to the cortical surface. We cannot rule out differences in spike isolation, although we used tetrodes and high-impedance electrodes to ensure high quality recordings (Gray et al., 1995). However, if isolation quality varied, it would be expected to be worst in the middle layers because of the high packing density and relatively small size of stellate cells in layer 4C (Peters, 1994). This would cause rsc there to be higher than in other layers (Cohen and Kohn, 2011), opposite to our findings. Finally, our analysis revealed no consistent difference in the tuning similarity between layers, as expected given the normal penetration we used to sample neurons within the same cortical column.   There are three, not mutually exclusive, sets of mechanisms that may contribute to the laminar dependence of correlations. First, the low rsc values in the middle layers of V1 may arise in part from the unique inputs provided to this network – namely feedforward input from the LGN, where responses are relatively independent (Cheong et al., 2011). This would also explain the drop in rsc we observed at the deepest recording sites, presumably in layer 6, which also receives substantial thalamic input (Casagrande and Kass, 1994). Interestingly, the koniocellular layers of the LGN, which project to the superficial layers of cortex (Chatterjee and Callaway, 2003) are more strongly correlated, particularly on slow timescales (Cheong et al., 2011).  It is unlikely, however, that rsc values in V1 simply reflect the properties of LGN input. First, independent upstream neurons can lead to correlated responses in downstream neurons that pool common sets of inputs, as middle layer neurons do (Reid and Alonso, 1995). Second, neurons in the middle layers provide the dominant input to layers 2/3; although rsc is weak in the source population (Casagrande and Kass, 1994; Douglas and Martin, 2004; Thomson and Lamy, 2007), correlations for pairs of superficial neurons are substantially stronger. Thus the strength of rsc in a particular layer is unlikely to be solely a function of the dependencies in the feedforward input it receives.   A second explanation for the low values of rsc in the middle layers of V1 is the properties of the local circuitry. Stellate cells in the middle layers have limited dendritic arbors (Lund et al., 1979; Blasdel and Lund, 1983), and do not give rise to long-range (several millimeters) horizontal connections found in the superficial and deep layers (Lund, 1988). Feedback connections from extrastriate cortex, which target widely separated neurons, terminate in all cortical layers except the middle layers (Felleman and Van Essen, 1991; Salin and Bullier, 1995). It is thus possible that the richer recurrent circuitry outside the middle layers leads to higher rsc values. Networks in the middle layers may conform more closely to the homogeneous random connectivity patterns that generate weak rsc values in recurrent network models (van Vreeswijk and Sompolinsky, 1996; Renart et al., 2010), whereas the spatial and functional dependencies of connections in other layers generate 
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rhythmic activity (see also below) that leads to higher values of rsc (Litwin-Kumar et al., 2011; Rasch et al., 2011).   A third possibility is that laminar differences in correlations arise in part from differences in the intrinsic properties of neurons. For instance, neurons in layers 5 and 2/3 generate ~10 Hz rhythmic activity (Silva et al., 1991; Flint and Connors, 1996). Layer 5 neurons also generate 0.1-1 Hz oscillations (Sanchez-Vives and McCormick, 2000; Sakata and Harris, 2009)) which may propagate via patchy horizontal connections (Compte et al., 2003). While it would be premature to link these findings directly to our results, they do indicate the existence of laminar differences in neuronal (and presumably circuit) properties that could contribute to laminar variations in correlations. A related possibility is that there is a greater diversity in the electrophysiological properties of middle-layer neurons, a factor that contributes to decorrelation in the olfactory bulb (Padmanabhan and Urban, 2010).  We have previously suggested that slow timescale correlations arise from low frequency fluctuations in responsivity (Kohn and Smith, 2005; see also Poulet and Petersen, 2008 and Mitchell et al., 2009, for related findings; and Kohn et al., 2009, for review). Low frequency LFP fluctuations have been shown to be predictive of spike rate fluctuations in V1 (Kelly et al., 2010) and computational work suggests these fluctuations require horizontal connections (Rasch et al., 2011). Consistent with this, we observed enhanced low frequency LFP power in the superficial and deep layers, and a notable reduction in power in the middle layers.   The laminar trends we observed for rsc computed from full trial counts were distinct from those for fine timescale correlations, or synchrony. Synchrony was slightly higher in the middle layers than outside, suggesting distinct mechanisms generating correlations on different timescales. Gamma power was also highest near the middle layers (Maier et al., 2010), presumably related to the oscillatory side lobes in the CCGs there. However, synchrony was also observed at sites in the superficial and deep layers, where gamma was much weaker. This suggests a weak coupling between gamma and synchrony (Roy et al., 2001; Samonds and Bonds, 2005; Fries et al., 2008). The laminar trends in V1 were only partially evident in V2. Unlike V1, rsc and low-frequency power in the LFP were similar in input and nearby layers. Synchrony and gamma LFP power, on the other hand, were elevated in the input layers, as in V1. The difference between V1 and V2 could reflect differences in local circuitry, neuronal properties, or the fact that feedforward input from V1 may be more strongly correlated or show a different pattern of convergence from thalamocortical input to V1.   Given that the correlations found in cortex appear detrimental to population coding accuracy, one could ask why they exist: our results show that cortical networks can be wired to provide relatively independent responses. One possibility is that correlations arise invariably from providing neurons with diverse sources of input (distant neurons connected via inter- or intra-areal connections). This connectivity may allow neurons to participate in diverse computations and functions, although some inputs will be irrelevant for a particular situation or computation. Because they are not recruited by the stimulus or 
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task at hand, these inputs may provide a source of shared, fluctuating drive that results in correlations (Churchland et al., 2010).   
FIGURE LEGENDS  Figure 1. Experimental methods. A, A diagram of the recording procedure. A linear array of 5-7 microelectrodes or tetrodes was inserted normal to the opercular surface of V1, shown in a sagittal section of macaque cortex. The red dashed rectangle indicates the approximate location of the histological section show in panel B for one penetration. B, A Nissl-stained section from an example penetration in V1. Recordings were made every 200 μm throughout the cortical layers. The four black arrowheads indicate lesions made by electrodes at the far ends of the array at the last recording site in V1 and again 250 μm into white matter. The scale bar indicates 500 μm (uncorrected for tissue shrinkage). C,  A CSD analysis of the LFP signals from an individual penetration, showing the location, direction and strength of current flow. Sinks are shown in red and sources in blue. The middle layers are identifiable as the earliest current sink followed by a source.  Figure 2. Dependence of rsc on laminar location. A, The value of rsc for pairs of neurons grouped based on the depth of recording. The middle layers, determined by the CSD analysis, are defined as depth zero, with superficial and deep layers indicated as negative and positive depths, respectively. The number of neuronal pairs that contribute to each depth is indicated above the histogram bar. Error bars on this and all subsequent plots indicate ± 1 SEM. B, Neuronal pairs were grouped so that the recording site at depth zero included in the middle layers and all other neuronal pairs were labeled as superficial or deep relative to this site. The three frequency histograms show the distribution of rsc in each of these groups.  Figure 3. Dependence of timing correlations on laminar location. A, Average shuffle-corrected CCGs for pairs of neurons grouped by recording depth (shown at the right). Broad peaks are present in the superficial and deep layers, while sharp peaks with oscillatory side lobes (black arrows) are more notable in the middle layers. The tick marks to the left of the CCGs indicate a value of 0 coinc./sp. The tick marks at the bottom of the CCGs indicate zero time lag. B, Average jitter-corrected CCGs for the same data as in A. The axes scales are adjusted for clearer display. The peak of the CCG is highest in the middle layers, although evident across most depths.   Figure 4. Effect of firing rate on rsc. A, For superficial and deep layer pairs, this color plot shows rsc as a function of the mean firing rate of the two cells (on the x and y axes). Only bins with at least 10 observations are shown. For pairs and stimuli in which both neurons had high firing rates (upper right corner of the panel), rsc was higher. B, This plot is the same as A except for pairs in the middle layers. Here, even when both neurons had high firing rates, rsc was low.   Figure 5. Dependence of LFP power on laminar location. A,  The power in the LFP as a function of electrode depth (on the y-axis) and frequency (on the x-axis). Low-frequency power (0-10 Hz) peaks in the superficial and deep layers. B, Power in the 30-80 Hz band is 
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highest in the middle layers. Note the change in scale for the two panels. C and D,  Collapsed across frequencies in the low (0-10 Hz) and gamma (30-50 Hz) range, these frequency histograms show the average LFP power vs. depth in the bands where the layer differences are most pronounced.   Figure 6. Dependence of correlations in V2 on laminar location. A, Jitter-corrected CCGs  (averaged across all pairs) at four V2 sites, recorded in one V2 penetration with simultaneous recording in the superficial layers of V1. Sharp peaks in the CCG were evident at the second and third depth, but only the amplitude of the former reached our criterion of significance (horizontal dotted lines indicating 5 SDs). The horizontal and vertical dashed lines indicate 0% synchrony and zero time lag, respectively. B, Using the presence of sharp peaks as an indicator of the middle layers of V2, these frequency histograms show the distribution of rsc for V2-V2 pairs in superficial, middle and deep layers. C, For the same pairs shown in B, average jitter-corrected CCGs in the superficial, middle and deep layers. The vertical scale bar indicates 0.0002 coinc./sp. for panel C and 0.01% efficacy (normalized only by the presynaptic rate) for panel A. The horizontal bar indicates 25 ms for both panels.  
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Gamma Rhythms in the Brain
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Brain rhythms are activity fluctuations shared in populations of

neurons. They are evident in extracellular electric fields and

detectable through recordings performed within the brain or on

the scalp. The gamma rhythm, a relatively high frequency (30–

80 Hz) component of these fluctuations, has received a great deal

of attention. Gamma is modulated by sensory input and internal

processes such as working memory and attention. Numerous

theories have proposed that gamma contributes directly to brain

function, but others argue that gamma is better viewed as a simple

byproduct of network activity. Here we provide a basic

introduction to this enigmatic signal, the mechanisms that

generate it, and an accompanying paper in PLoS Biology attempting

to elucidate its potential function.

Hans Berger first successfully measured the brain waves of

humans in 1924 using the electroencephalogram (EEG) [1]. His

goal was to demonstrate that the electromagnetic fields of the

human brain could be used for telepathy. Although the signals he

detected were unsuccessful for this purpose, the EEG was widely

adopted by clinicians and scientists. This is because the recordings

are easy to perform and the rhythms detected are informative of

brain state. For example, when we are in a deep sleep, the EEG

consists of low-frequency, large-amplitude oscillations; when we

are awake and attentive, it consists primarily of fast, small

amplitude rhythms.

Brain rhythms are evident as extracellular voltage fluctuations.

These arise from summed electrical activity (primarily, but not

exclusively, inputs) in populations of neurons, and are shaped by

the geometry and alignment of those neurons [2]. The resultant

fluctuations can be measured on the scalp by EEG or

magnetoencephalography (MEG), and intracranially with subdur-

al electrodes (electrocorticography). They can also be measured,

on a more local basis, with a high impedance electrode placed in

the brain (Figure 1A). The voltage fluctuations detected are then

low-pass filtered (,250 Hz) to capture the slower fluctuations of

brain rhythms (Figure 1B). The resultant signal—termed the local

field potential (LFP)—was frequently used to study brain function,

until it fell in popularity with the advent of single-cell

electrophysiology in the late 1950s. Over the last decade, however,

LFPs have attracted renewed interest as a potentially useful signal

for studying the behavior of ensembles of neurons.

The LFP is a continuous voltage signal that can vary in

amplitude and frequency content. Like the EEG, it can be

decomposed into different frequency components—delta

(,4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz),

gamma (30–80 Hz), and high-gamma or high-frequency activity

(.80 Hz)—although the precise frequency ranges associated with

these terms vary across studies. The relative contribution of these

different components to the measured signal is quantified by their

relative power (Figure 2). In quiescent networks, most of the

power in the LFP is found at low frequencies, indicating that

rhythms like delta and theta contribute more significantly than

high frequency ones. This is still the case when networks are

activated, but less so: the power in higher frequencies increases,

whereas that in lower frequencies is suppressed. The enhance-

ment of gamma power in this driven state is particularly striking

and is evident as a distinct ‘‘bump’’ in the power spectrum

(Figure 2; right panel, solid line).

A prominent gamma rhythm provides a signature of engaged

networks. Gamma has been observed in a number of cortical

areas, as well as subcortical structures, in numerous species. In

sensory cortex, gamma power increases with sensory drive [3,4],

and with a broad range of cognitive phenomena, including

perceptual grouping [5] and attention [6]. At a given recording

site, gamma is stronger for some stimuli than others, generally

displaying selectivity and a preference similar to that of nearby

neuronal spiking activity [7,8]. In higher cortex, gamma power is

elevated during working memory [9] and learning [10]. Interest-

ingly, irregular gamma activity has been observed in neurological

disorders such as Alzheimer’s disease, Parkinson’s disease,

schizophrenia, and epilepsy [11].

To interpret the meaning of changes in gamma requires an

understanding of the cellular and network mechanisms that

generate it. Fast-spiking GABAergic inhibitory interneurons are

known to be crucial, with their activity being both necessary and

sufficient to generate gamma [12–14]. Network models suggest

that this process may be enhanced by interactions with excitatory

neurons [15] and that local gamma-generating networks can be

coupled by long-range horizontal connections [16] or gap

junctions among inhibitory interneurons [17]. Such coupling

would seem necessary, as gamma has been shown to be coherent

across millimeters of cortex [18–20].

It is well established that gamma correlates with engaged or

driven networks, but it is less clear whether it is a simple byproduct

of network activity or has an important functional role. This is not

for lack of proposals: numerous functions have been attributed to

this rhythm. Most of these hinge on a relationship between gamma

and the timing of spiking activity in nearby neurons. Spikes are

actively generated signals in individual neurons and relay

information between neural networks. Gamma activity is not

actively propagated. It is a component of an extracellular field
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potential that reflects primarily the synaptic input to a collection of

neurons. Because of this, gamma can only play a role in processing

if it is linked to spiking activity in a meaningful way. A coupling

between gamma and spike timing could arise because local

inhibitory neurons—which contribute strongly to gamma—fire

preferentially at the trough of the gamma cycle [21]. This makes

the spiking of excitatory projection neurons more likely to occur at

an offset phase, when inhibition is weaker.

Based on this mechanism—in some cases, predating its

discovery—numerous theories have suggested that the gamma

coordination of spiking activity is central to cortical processing.

One purports that gamma acts as a temporal reference frame, with

the gamma phase at which spikes occur encoding stimulus strength

[22]. Consistent with this suggestion, neurons in visual cortex can

encode stimulus orientation in ‘‘phase-of-firing’’ relative to gamma

[23]. Another theory proposes that gamma may influence the

communication between neuronal populations [24,25]. Here the

suggestion is that when field potentials and spiking activity in two

groups of neurons are phase coherent, the communication

between them will be maximal. A third hypothesis, ‘‘binding by

synchrony’’, suggests gamma can link the representation of a single

sensory input (e.g., a visual object) whose features are processed by

Figure 1. Illustration of LFP recordings. (A) A high impedance electrode detects extracellular electrical activity of nearby neurons. (B) This raw
signal is low-pass filtered (e.g., ,250 Hz) to provide the local field potential (LFP), and high-pass filtered (e.g., 0.5–10 kHz) to isolate spiking activity.
doi:10.1371/journal.pbio.1001045.g001
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different groups of neurons [26]. At the heart of these proposals is

the concept that gamma influences spike timing and that this

affects cortical computation and function.

A number of recent studies have taken a more critical view of

the role of gamma, testing whether it has the properties required

for its purported functions. One study showed that the frequency

of gamma can vary between nearby sets of neurons, limiting its

ability to function as a global timing reference [27]. Another has

shown that, at a single site, the gamma rhythm is not ‘‘auto-

coherent’’, meaning that its absolute phase changes with time, a

pernicious feature for a reference clock or integrative signal [28].

In this vein, it is also worth noting that gamma fluctuations are

small, roughly 10–20 microvolts on average, and account for only

0.5%–10% of the total power in the LFP. These observations raise

the possibility that gamma is simply a resonant frequency that has

no special function, a byproduct of a recurrently connected

neuronal network.

To test existing proposals, and to understand the function of

gamma more generally, it is critical to analyze the temporal

relationship between spikes and gamma. This is typically done

using spike-field coherence analysis or by spike-triggered averaging

of the LFP, both of which provide a measure of the temporal or

phase relationship between spike trains and the LFP. These

measures have revealed weak but measurable coupling, which

increases when gamma power is elevated [6,9,29]. This coupling is

only meaningful, however, if the two signals are measured

independently. LFPs and spikes are often recorded from a single

electrode. Because extracellular action potential waveforms have a

broad frequency spectrum, including power below 250 Hz, their

energy can leak into the LFP signal [30,31]. That is, the low-pass

filtering of the extracellular voltage signal, which is used to isolate

the LFP (Figure 1), may not entirely remove action potential

waveforms. The resultant contamination would introduce spurious

correlations: the timing of spikes will appear to be related to

fluctuations in LFP power for the simple reason that a remnant of

the spike waveform remains in that signal.

The paper by Ray and Maunsell in this issue of PLoS Biology

carefully examines the interaction between spikes and the LFP

[32]. Using clever analysis, they provide rigorous quantification of

the contamination of LFP signals by spike waveforms and spike-

related transients. They show this contamination can contribute to

the high frequency components of the LFP, and has a measurable

effect on frequencies extending down to 50 Hz. For studies that

have focused on spike–gamma interactions in the lower gamma

rhythm range (30–50 Hz), contamination is thus less likely to be an

issue, although the precise frequency range over which contamina-

tion occurs will depend on the specific properties of the filters used

to separate spikes from LFPs. However, for frequencies above this

range (.50 Hz), which include the higher frequencies of gamma

and the full range of high-gamma, spike–LFP correlations might be

inflated by spike contamination. More generally, the findings of Ray

and Maunsell suggest the need for a re-evaluation of the spike–LFP

timing relationship, particularly in cases where this has been

established using signals recorded from the same electrode.

In a related analysis, Ray and Maunsell tested the relationship

between high-gamma and gamma power. To do so, they

manipulated stimulus size. It is well known that many neurons

in primary visual cortex are less responsive to large stimuli than

small ones [33]. Gamma power, in contrast, increases with

stimulus size [34]. Building on this work, Ray and Maunsell show

that high-gamma power is modulated similarly to spiking activity

by stimulus size (i.e., suppressed by large stimuli), and thus

differently from gamma. The authors also show that high-gamma

power has similar temporal dynamics as spiking activity, whereas

gamma does not. Together, this strongly suggests that the

proposed functions of gamma do not apply to high-gamma, even

in situations where both signals are similarly enhanced. Rather,

high-gamma may best be viewed as a reliable and convenient

signal to represent multi-unit activity (MUA).

The findings of Ray and Maunsell help clarify the relationships

among gamma, high-gamma, and spiking activity. But much

remains unclear. It is certain that gamma, like other brain

rhythms, can provide a signature of cognitive state, as well as

network dysfunction. To move beyond the interesting correlation

between these rhythms and brain state, like those first described by

Berger, we need a better understanding of the underlying

generative mechanisms, the way in which these signals modulate

spiking activity, and the effect they have on the computations

performed by neuronal networks. Only then will we know what

role, if any, gamma plays in cortical function.
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Stimulus Selectivity and Spatial Coherence of Gamma
Components of the Local Field Potential
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The gamma frequencies of the local field potential (LFP) provide a physiological correlate for numerous perceptual and cognitive
phenomena and have been proposed to play a role in cortical function. Understanding the spatial extent of gamma and its relationship to
spiking activity is critical for interpreting this signal and elucidating its function, but previous studies have provided widely disparate
views of these properties. We addressed these issues by simultaneously recording LFPs and spiking activity using microelectrode arrays
implanted in the primary visual cortex of macaque monkeys. We find that the spatial extent of gamma and its relationship to local spiking
activity is stimulus dependent. Small gratings, and those masked with noise, induce a broadband increase in spectral power. This signal
is tuned similarly to spiking activity and has limited spatial coherence. Large gratings, however, induce a gamma rhythm characterized by
a distinctive spectral “bump,” which is coherent across widely separated sites. This signal is well tuned, but its stimulus preference is
similar across millimeters of cortex. The preference of this global gamma rhythm is sensitive to adaptation, in a manner consistent with
its magnifying a bias in the neuronal representation of visual stimuli. Gamma thus arises from two sources that reflect different spatial
scales of neural ensemble activity. Our results show that there is not a single, fixed ensemble contributing to gamma and that the
selectivity of gamma cannot be used to infer its spatial extent.

Introduction
Local field potentials (LFPs) reflect coordinated synaptic input
and slow intrinsic conductances in neurons (Mitzdorf, 1985;
Buzsaki, 2006) and thus provide a potentially useful view of neu-
ronal ensemble activity. Gamma components of the LFP provide
a physiological correlate of perceptual and cognitive phenomena
(Pesaran et al., 2002; Gail et al., 2004; Wilke et al., 2006; Wom-
elsdorf et al., 2006; Fries et al., 2008) and have been suggested to
play an active role in cortical processing.

The spatial extent and functional specificity of gamma are
critical constraints on the role it may play in cortical processing.
To function as a global reference signal (e.g., an internal clock)
(Hopfield, 2004; Fries et al., 2007), gamma would need to form a
widespread, coherent rhythm, potentially shared among neuro-
nal ensembles with different response properties. To select spe-
cific subsets of neurons [e.g., those representing an attended
location (Fries, 2009)], gamma would need to be limited in ex-

tent. To link distributed neurons into an ensemble [e.g., binding
or dynamically routing information (Gray, 1999; Buzsaki, 2006;
Colgin et al., 2009)], gamma would need to target specific subsets
of cells but also be coherent across locations.

The spatial extent and functional specificity of gamma are
unclear. Recently, Katzner et al. (2009) showed that the evoked
LFP, a stimulus-locked transient response, reflects neural activity
within 250 �m of the recording site. Xing et al. (2009) showed
that this “spatial footprint” reflects the volume conduction of
extracellular fields (estimated to be 250 �m) and the extent of the
neural ensemble generating the signal. However, these measures
of passive propagation and the evoked LFP do not directly ad-
dress the extent of gamma. This is because gamma is an induced
signal—an intrinsic rhythm generated by specific neurons and
circuits (for review, see Bartos et al., 2007; Whittington et al.,
2011) that are modulated by, but not time locked to, stimulus
drive (Kruse and Eckhorn, 1996; Juergens et al., 1999; Brosch et
al., 2002; Siegel and König, 2003; Tallon-Baudry, 2003).

Previous studies have provided disparate views of the extent
and functional specificity of gamma. In primary visual cortex
(V1), gamma is stimulus selective (Gray and Singer, 1989; Frien
et al., 2000; Siegel and König, 2003; Henrie and Shapley, 2005; Liu
and Newsome, 2006; Berens et al., 2008), suggesting that the
relevant circuits have a limited extent: a spatially distributed or-
igin would involve averaging ensembles with different prefer-
ences and should thus produce a relatively unselective signal.
However, gamma has sometimes (Liu and Newsome, 2006;
Katzner et al., 2009), but not always (Kreiman et al., 2006; Berens
et al., 2008), been found to have the same preference as spiking
activity recorded at the same site. As a result, it has been suggested
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to reflect activity within a few hundred micrometers up to milli-
meters of the electrode. Another approach to estimating the
extent of gamma is to measure it simultaneously at different lo-
cations. This has revealed a signal that is coherent across many
millimeters of cortex (Juergens et al., 1999; Frien and Eckhorn,
2000; Leopold et al., 2003) and even across regions (Murthy and
Fetz, 1992; Pesaran et al., 2002; Schoffelen et al., 2005; Popescu et
al., 2009). The presence of gamma in scalp recordings also sug-
gests a widespread coherent signal (Tallon-Baudry, 2003).

To clarify the spatial extent of gamma and its relationship to
neuronal activity, we measured both signals simultaneously using
multielectrode arrays implanted in the superficial layers of ma-
caque V1. We compared the response properties of gamma across
locations and, at each site, with local spiking activity, for a range
of stimulus manipulations.

Materials and Methods
Animal preparation and electrophysiology. We recorded data from eight
anesthetized, adult male macaque monkeys (Macaca fascicularis). The
techniques we use have been described in detail previously (Smith and
Kohn, 2008). In brief, anesthesia was induced with ketamine (10 mg/kg)
and maintained during preparatory surgery with isoflurane (1.5–2.5% in
95% O2). Anesthesia during recordings was maintained with sufentanil
citrate (6 –18 �g � kg �1 � h �1, adjusted as needed for each animal). Ve-
curonium bromide (0.1 mg � kg �1 � h �1) was used to suppress eye
movements. Drugs were administered in normosol with dextrose (2.5%)
to maintain physiological ion balance. Physiological signs (ECG, blood
pressure, SpO2, end-tidal CO2, EEG, temperature, and urinary output
and osmolarity) were monitored to ensure adequate anesthesia and ani-
mal well-being. Temperature was maintained at 36 –37 C°.

Data were also obtained from an awake behaving male rhesus macaque
monkey (Macaca mulatta). Detailed methods regarding our procedures
for training and recording from awake behaving macaques can be found
in a previous publication (Smith et al., 2007). All procedures were ap-
proved by the Institutional Animal Care and Use Committee of Carnegie
Mellon University (awake recordings only) and the Albert Einstein Col-
lege of Medicine at Yeshiva University (anesthetized recordings only)
and were in compliance with the guidelines set forth in the United States
Public Health Service Guide for the Care and Use of Laboratory Animals.

We implanted a 4 � 4 mm multielectrode array (0.4 mm spacing and
1 mm electrode length) with 100 electrodes into the upper layers of
primary visual cortex (�0.6 – 0.8 mm deep in anesthetized animals; 1
mm for awake recordings), �10 mm lateral to the midline and �8 mm
posterior to the lunate sulcus. Two reference wires were placed between
the brain surface and the dura. Events larger than a user-defined thresh-
old were recorded (Cyberkinetics Neurotechnology Systems). We ap-
plied additional voltage thresholding off-line (Plexon Offline Sorter) to
remove any remaining noise. Units from the same electrode were then
combined to form multiunit activity (MUA). The peak firing rate of this
signal was on average 20.7 � 0.5 ips, suggesting it arose from a handful of
neurons at most. LFPs were obtained by bandpass filtering the same
signal between 0.3 and 250 Hz and sampling at 1 or 2 kHz.

In some experiments, a separate linearly arranged multielectrode de-
vice (Thomas Recording) was positioned between the lunate sulcus and
the array, with each electrode referenced to the guide tubes. Raw signals
recorded from this device were bandpass filtered between 0.5 and 250 Hz,
and digitized at 1 kHz. To remove 60 Hz noise, we applied a fourth-order
Butterworth band-stop filter to the raw data.

Visual stimulation. Visual stimuli were generated using custom soft-
ware (EXPO or Matlab Psychtoolbox) and displayed on a monitor with a
resolution of 1024 � 768 pixels, viewed at a distance of 110 cm (58 cm for
awake recordings). We mapped the spatial receptive field of each channel
by presenting small, drifting gratings (0.6°; 250 ms duration) at a range of
spatial positions. We centered our stimuli on the aggregate receptive field
of the recorded units. Stimuli were viewed binocularly and presented for
1 s at full contrast. We presented each stimulus 25 times (100 times for
measurements of dynamics), in a pseudorandom sequence. In awake

recordings, the animal was required to maintain fixation within a 1°
window during the 1 s stimulus presentation and to make a saccade to a
random target location at stimulus offset.

For our measurements of tuning at different sizes, stimuli were viewed
monocularly. In these experiments, we included only those sites whose
receptive field center was within 0.5° of the stimulus center. This yielded
typically approximately one-half of the recorded sites, with a maximal
separation of 3.57 � 0.02 mm on average. In our noise-masking experi-
ments, spatial noise was created by selecting small patches (0.06 � 0.06°)
randomly in the original image, computing the mean luminance of each
patch, and then randomly permutating the patches (Zhou et al., 2008).
The noise level (20, 50, and 80%) was defined by the proportion of total
area replaced by noise. Noise was randomly distributed on each frame.

Data analysis. We isolated the induced components of the LFP by
subtracting the evoked signal (the average response across trials, for each
stimulus) from the raw signal on each trial (Fig. 1 A). We then analyzed
responses 100 –1000 ms after stimulus onset, when the magnitude of the
evoked component was minimal. We did this to separate these two dif-
ferent components of the LFP (Katzner et al., 2009), but the power spec-
tra of the raw LFPs (i.e., not subtracting the evoked component) were in
fact similar to the induced LFPs, except at low frequencies (�20 Hz) (Fig.
1 B). All of the findings reported here were thus similar when based on
raw responses, even when we included the onset transient.

We calculated the power spectrum with a multitaper method (Mitra
and Pesaran, 1999), which uses a set of orthogonal Slepian tapers to
provide a good estimate of power for a limited number of trials and small
time windows. For a signal of duration T and a desired half-bandwidth of
W (determining the smoothness of the spectrum), the taper number is
given by k � 2TW � 1. For most of our analysis, the duration of the
analyzed epoch was 0.9 s, so we used eight tapers to provide a half-

0 0.5 1

Induced

Time (s)

0.
1 

m
V

B

A

Evoked

Raw LFP

P
ow

er
 (A

.U
.)

0 40 80 120 160
10−1

101

103

105 Raw LFP
Induced LFP
Spontaneous

Frequency (Hz)

Figure 1. Evoked and induced components of the LFP. A, Single epoch examples of the raw
LFP (top) and the induced component (bottom). The induced component is calculated by sub-
tracting the evoked component (middle) from the raw signal. B, Example of the power spec-
trum of the induced LFP (red), compared with the raw LFP (black). Spontaneous activity was
measured with a uniform luminance screen (gray dashed).
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bandwidth equal to 5 Hz. For the analysis of dynamics, we used a 129 ms
sliding window (25 ms steps) and three tapers.

Tuning of the LFP was based on its average power within 4 Hz bins,
spanning the range from 0 to 160 Hz. Orientation preference was deter-
mined by the vector sum of responses to 16 test directions (22.5° step).
An orientation selectivity index (OSI) was calculated as the vector sum of
the response vectors (combining responses to different drift directions of
the same orientation), normalized by the sum of lengths of the vectors
(Leventhal et al., 1995). For computing the OSI, we defined response
strength with respect to that driven (MUA) or induced (LFP) by the least
preferred orientation. Using spontaneous activity as a baseline was pre-
cluded because its power could be either greater or less than the stimulus-
induced power, depending on the frequency band of interest.

Only sites with an OSI �0.2 for both MUA and gamma were kept for
tuning-related analysis (i.e., for determining the orientation preference
of the site or for the correlation between tuning curves). To determine
the preference of individual sites, we used the best tuned frequency band
[i.e., the 4 Hz band with highest selectivity (Berens et al., 2008)] in the
gamma range (30 –50 Hz).

We quantified the variance of orientation preferences in the popula-
tion, � 2, as follows:

1 �

�� �
i�1

n

cos�2�i 	�2

� ��
i�1

n

sin�2�i 	�2

n
,

where �i is the orientation preference for channel i and n is the number of
sites.

To determine the tuning similarity between MUA and LFP from the
same channel (rMUA-LFP or rMUA-� when comparing only to the gamma
components) or between two LFP sites (rLFP-LFP or r�-�), we calculated
the Pearson correlation between their tuning. We found that the peak
gamma frequency was lower for large gratings (Gieselmann et al., 2008)
and for stimuli masked by noise [similar to the effect of lowering stimulus
contrast (Ray and Maunsell, 2010)]. To enable a meaningful comparison
across conditions, we therefore computed tuning correlations (and all
other measures, except orientation preferences) based on the average
gamma power in 30 –50 Hz. We obtained similar results if our analysis
was based on any subband in this frequency range.

To measure the spatial coherence of the LFP, we calculated the coher-
ency between signals measured at different sites (x and y) as follows:

Cxy� f 	 �
Sxy� f 	

�Sxx� f 	Syy� f 	
,

where Sxy is the cross-spectrum calculated with the multitaper method
(duration of 0.9 s, half-bandwidth of 5 Hz, and taper number of 8), and
Sxx and Syy are the respective autospectra (Pesaran et al., 2002). Cxy is a
complex number. Its modulus is the coherence (ranging from 0 to 1), a
measure of the relationship between two signals as a function of fre-
quency ( f ). The phase of Cxy is the relative phase difference between the
two signals, as a function of frequency.

All indications of variation in the graphs and text are SEMs. The sta-
tistical significance of all results was evaluated with two-tailed t tests,
unless otherwise noted. Significance of correlation values was assessed
after applying the Fisher Z-transform to the data.

Results
We implanted microelectrode arrays in the upper layers of V1 of
eight anesthetized macaque monkeys and recorded spiking activ-
ity and LFPs (0.3–250 Hz) simultaneously on each electrode.
Each array covered roughly a 4 � 4 mm cortical region, corre-
sponding to the representation of �2–3° of the lower visual field
(2–5° from the fovea).

Orientation tuning of gamma power
To compare the tuning of gamma power to local spiking activity,
we measured responses to large gratings (7.4 or 10° in diameter)

drifting in 16 different directions. Gratings had a spatial fre-
quency (1 cycle/deg) and drift rate (6.25 Hz) chosen to evoke
robust activity in parafoveal V1 (Foster et al., 1985). Spiking ac-
tivity was isolated from the filtered voltage signal (250 Hz-10
kHz) with a user-defined threshold and sorted off-line to yield
MUA. Tuning of the LFP was generated by computing the power
spectrum of the induced signal on each trial and measuring how
power in gamma and other frequency bands depended on stim-
ulus orientation. Consistent with previous studies, we found that
the LFP was stimulus selective. An example of its tuning at one
site (for frequencies between 32 and 36 Hz) is shown in Figure
2A, together with that of the local MUA.

We quantified tuning quality using a selectivity index, for
which a value of 0 indicates an equal response to all orientations
and a value of 1 indicates an elevated response to a single orien-
tation, relative to all others. The low-frequency components of
the LFP were poorly tuned, but for frequencies in the gamma
range and higher (above �30 Hz) selectivity was relatively high
(Fig. 2B, black line) (n � 680 sites in 8 implants), albeit lower
than that of MUA (0.47 � 0.01; indicated with black dot to the
right).

To quantify the similarity of LFP orientation tuning to local
MUA, we computed the correlation between their tuning at each
site (termed rMUA-LFP). A value of rMUA-LFP near 1 indicates very
similar tuning; a value near �1 would indicate the opposite. For
the tuning curves in Figure 2A, rMUA-LFP was 0.22. Consistent
with previous V1 studies (Frien et al., 2000; Siegel and König,
2003; Berens et al., 2008), we found that high-frequency compo-
nents of the LFP were more similarly tuned to local spiking activity
than low-frequency components (Fig. 2B, red trace). However,
despite the tendency for rMUA-LFP to increase for higher frequen-
cies, we observed a clear deviation in the range of 30 to 50 Hz (low
gamma frequencies, hereafter “gamma”; indicated by box): tun-
ing of gamma was relatively distinct from that of MUA. A similar
effect was observed at harmonics of these frequencies (70 –90 Hz)
in some, but not all, implants.

To explore this further, we compared the preferred orienta-
tion of gamma and MUA at each tuned site (selectivity index,
�0.2). The two signals had a similar preference at some sites but
not at others (Fig. 2C for data from an example implant). Strik-
ingly, this occurred because the orientation preference of gamma
was often similar across sites. This is evident in the marginal
histograms (Fig. 2C), which show a roughly uniform distribution
of preferences for spikes (circular variance, � 2, of 0.73) and a
clearly biased distribution for gamma (� 2 of 0.23), with a prefer-
ence of �110° being the most common. We found a similar
pattern in other implants: the distribution of preferences was
consistently uniform for spikes (� 2 of 0.75 � 0.03; n � 8) but
strongly biased for gamma (0.23 � 0.06; p �� 0.001 for the dif-
ference between the two signals; Wilcoxon’s rank sum test). The
orientation preferred by gamma, however, was different in each
implant.

We considered that our results might be due to anesthesia, so
we recorded responses using the same type of microelectrode
arrays and visual stimuli in an awake monkey (see Materials and
Methods). The data are consistent with, but more striking than,
those observed in anesthetized animals (Fig. 2D). In this data set,
the orientation preference of gamma was always near 60° (� 2 of
0.07), whereas simultaneously recorded MUA showed a wide
range of preferences (� 2 of 0.80).

To evaluate the cortical distance over which orientation tun-
ing is similar for gamma and other frequency components, we
computed the correlation between its tuning (rLFP-LFP) at all se-
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lective sites and sorted the data according
to the distance between electrodes (Fig.
3A) (n � 31,211 pairs of sites). The value
of rLFP-LFP was well maintained across a
distance of �4 mm for frequencies be-
tween �35 and 90 Hz. In the 30 –50 Hz
band, it decayed only 10.2%, from 0.69 �
0.01 for nearby sites (0.4 – 0.8 mm; n �
2233) to 0.62 � 0.01 at distances of 4 –5
mm (n � 571). At lower frequencies (�30
Hz), rLFP-LFP decayed more rapidly (35%
over the same distance). At higher fre-
quencies (�100 Hz), rLFP-LFP was signifi-
cantly smaller, even for nearby electrodes,
as each site had a different preference.

Because gamma tuning was similar
across the entire spatial extent of the array,
we performed simultaneous recordings
with a separate multielectrode device
(Thomas Recording) positioned �3 mm
away (five penetrations in four monkeys).
These electrodes were arranged linearly
and oriented orthogonally to the nearest
edge of the array, providing neurons that
were 3–9 mm from those sampled by the
array. We used large gratings covering the
receptive fields of all neurons to induce
gamma activity. The tuning measured at
these additional sites had a similar prefer-
ence to those measured by the array (ex-
ample shown in Fig. 3B with each square
representing the preference at one record-
ing site and the respective distributions
shown in Fig. 3C), with a difference in
mean preference of 4.5 � 1.0°. The orien-
tation preference of gamma can thus be
shared over many millimeters of cortex.
Note that these recordings used indepen-
dent multielectrode systems, with distinct
electrical references (see Materials and
Methods). As a result, these observations
preclude the possibility that shared tuning
involved an array-specific artifact (e.g.,
cross talk between electrodes) or arose
from a common referencing of array elec-
trodes (for related findings and further
discussion, see also Berens et al., 2008).

Our results show that, when gamma is
induced by large gratings, it is orientation
selective but with a preference distinct
from local spiking activity and similar
across millimeters of cortex. Since its tun-
ing is distinct, its power is thus not indic-
ative of the strength of activity in local
ensembles.

Dependence of gamma tuning on
stimulus size
The similar tuning of gamma we observed
across sites was based on responses to
large gratings. Previous studies have shown
that gamma power is weakened by reduc-
ing stimulus size (Bauer et al., 1995; Gie-

Figure 2. Comparison of the orientation tuning of the LFP with local spiking activity. A, Example tuning curves for MUA (black)
and gamma power (gray) at the same site (n � 25 repeats). B, Population average trends for LFP orientation selectivity (black) and
correlation between the tuning of MUA and the LFP (rMUA-LFP; red), as a function of frequency (n�680 sites). The mean orientation
selectivity index for MUA is indicated to the right side (black dot). C, Comparison of orientation preferences for gamma and MUA
(n � 71 sites from one implant). The circular variance (� 2) of the distributions was 0.23 for gamma and 0.73 for MUA. D, Similar
example for data from an awake monkey (n � 79 sites).

Figure 3. Relationship between orientation tuning of the LFPs measured at different sites. A, Population average of
rLFP-LFP as a function of distance, for sites with orientation selectivity �0.2. Cross sections of the color plot for distances of
0.4 – 0.8 mm (n � 2233 pairs) and 3.6 – 4.0 mm (n � 1347 pairs) are shown on the right. B, An example of orientation
preference in the gamma band, from simultaneous recordings using two multielectrode systems. Each square represents
the orientation preference of one recording site, plotted according to its spatial position. C, Distributions of orientation
preference for the example in B.
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selmann and Thiele, 2008). We therefore tested how this
manipulation affects the similar tuning of gamma across sites and
the relationship between its tuning and that of local spiking
activity.

To determine the influence of stimulus size, we measured
orientation tuning with gratings ranging from 1 to 10° in diame-
ter. Stimuli were centered on the aggregate receptive field of the
MUA, as determined by a separate mapping procedure (see Ma-
terials and Methods). We analyzed only those sites driven by our
smallest stimulus so that the same locations would be compared
across conditions. Consistent with previous observations (Bauer
et al., 1995; Gieselmann and Thiele, 2008), gamma power in-
creased with stimulus size (Fig. 4A), nearly doubling over the
range measured. In contrast, the spiking activity at these sites was
suppressed by stimuli �1° (Fig. 4A), as expected given the prev-
alence of surround suppression in V1 (Angelucci and Bressloff,
2006).

We found that the relationship between the orientation tun-
ing of MUA and gamma depended strongly on stimulus size.
When driven with small gratings (1°), gamma power had a sim-
ilar preference to MUA at all sites, as shown in Figure 4B for a
single implant. When stimulated with larger gratings (10°), the
preference of gamma changed: it became more similarly tuned
across sites, and its preference at many sites became distinct from
the local MUA (Fig. 4C). Across our data set, we found r�-�, the
tuning similarity of gamma, increased strongly with stimulus size
(Fig. 4D), from 0.11 � 0.01 to 0.50 � 0.01 (n � 2961 pairs of sites
in 3 implants). The similarity between the tuning of MUA and
gamma (rMUA-�), however, decreased from 0.42 � 0.03 to 0.25 �
0.03 (n � 129 sites), indicating these two signals became more
distinct for large stimuli. Although the preference of gamma
changed dramatically with stimulus size, its selectivity did not:
the mean selectivity for small stimuli was 0.31 � 0.01 com-
pared with 0.37 � 0.01 for large gratings, a small but statisti-
cally significant increase in tuning quality for the more global
signal (p � 0.007).

Our results show that gamma has a different preference for
small stimuli (i.e., one matched to local spiking activity) and large
ones (i.e., one shared across sites). This suggests that gamma does
not reflect ensemble activity of a fixed extent. The shared prefer-
ence we observed across millimeters of cortex, when gamma is
induced by large stimuli, suggests a spatially extensive mecha-
nism underlying the signal. For small stimuli, the close match
between the preference of spiking activity and gamma measured
at the same site strongly suggests a local basis for the signal. Note
that small gratings activated �10 mm 2 of cortex, but the prefer-
ence of gamma matched the spiking activity at each measured
location. Thus, the close match between the preferences of these
two signals is not a trivial consequence of small gratings only
driving circuits near a particular electrode.

Two components of gamma power
The change in the tuning of gamma with stimulus size was par-
alleled by a change in the form of the LFP spectra. Small gratings
induced a broadband (20 –160 Hz) increase in power, which was
stronger for some orientations than others (Fig. 5A). The prefer-
ence for gamma frequencies was similar to that of both higher
(�50 Hz) and nearby lower (20 –30 Hz) frequencies. Large grat-
ings induced a notable increase in power at gamma frequencies,
which strongly exceeded the power of both high and lower
(20 –30 Hz) frequencies (Fig. 5B) (Gieselmann et al., 2008; Ray
and Maunsell, 2010). The tuning of this gamma “bump” was

Figure 4. Effect of stimulus size on gamma power and its tuning. A, Normalized firing rate
(dashedtrace)andgammapower(solidblacktrace)asafunctionofstimulussize.Dataareshownonly
for sites driven by the smallest stimulus (n � 129 sites). B, Comparison of orientation preference for
activitydrivenbya1°grating(n�57sites), forasingleimplant.Thepreferenceofgammawassimilar
to the MUA at all sites, and the distribution of preferences had a similar variance (0.85 and 0.74,
respectively). C, Orientation preferences for the same sites as in B, but when stimulated with a large
grating (10°). Gamma preferences dissociated from MUA and became more uniformly tuned, with
circular variance equal to 0.32. D, Dependence of rMUA-� (solid trace; n�129 sites) and r�-� (dashed
trace; n � 2961 pairs) on stimulus size.
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often distinct from neighboring frequencies, suggesting a distinct
origin.

We estimated the strength of the broadband component of
gamma using an exponential fit to the power measured between
20 –26 and 80 –160 Hz (outside the range of gamma) (Fig. 5A,B,
dashed lines). For activity induced by small stimuli, this fit cap-
tured 92 � 2% of the variance in the spectra over the 20 –160 Hz
range. The gamma power estimated by this fit was 87 � 1% of
that measured, and it was strongly correlated with the measured
gamma across orientations (r � 0.64 � 0.02). The remaining
power—that exceeding this prediction—we refer to as the
gamma bump. The broadband component of gamma decreased
for larger stimuli (Fig. 5C), much like spiking activity (Fig. 4A);
the gamma bump, however, grew with stimulus size (Fig. 5C).
The proportion of total gamma power attributable to the bump
thus increased with stimulus size (Fig. 5D).

To compare the tuning of these two components of gamma
and their relationship to local spiking activity, we calculated
rMUA-� and r�-� separately for each component (Fig. 5E,F). We
found that the gamma bump for large stimuli (for which it was
most accurately measured) had a similar preference across sites
(r�-� of 0.56 � 0.007) and thus a distinct preference from local
spiking activity (rMUA-� of �0.01 � 0.04). The broadband com-
ponent of gamma, however, was always similarly tuned to local
spiking activity (rMUA-� ranging 0.50 to 0.62) and thus tuning
across sites was only weakly correlated (r�-� ranging from 0.18
to 0.24).

We conclude that there is a component of gamma that arises
from broadband changes in power. This component behaves
similarly to local spiking activity. Large stimuli induce a second
component, which has a shared preference across millimeters of
cortex. The flexible relationship between the tuning of gamma
and local spiking activity, revealed by changes in stimulus size,
can be explained by the relative contribution of these two com-
ponents to total gamma power.

Manipulations that do not alter
stimulus size can also change the
preference of gamma
Manipulating stimulus size shows that the
preference of gamma and its relationship
to local spiking activity are flexible, but
leaves unclear when gamma is likely to
display a shared preference across sites. It
could be that shared tuning involves
mechanisms that are recruited whenever
an extensive region of cortex is visually
driven, as with large gratings. Alterna-
tively, shared tuning may occur because of
the gamma bump induced by such stim-
uli. If so, manipulations that reduce the
power of this component—without alter-
ing the extent of visually driven cortex—
would be expected to result in tuning
similar to that of local multiunit activity.

To distinguish between these possibil-
ities, we manipulated gamma power by
masking large gratings with noise (Zhou
et al., 2008). This manipulation had a lim-
ited effect on V1 firing rate, with the re-
sponse evoked by unmasked gratings and
those masked with 80% noise being nearly
indistinguishable in strength (Fig. 6A,
dashed trace): the mean firing rate across

stimuli was 8.9 � 0.7 spikes/s for unperturbed grating compared
with 8.4 � 0.7 for those masked with 80% noise (n � 248 sites in
3 implants). With high levels of noise, however, gamma power
was reduced more than twofold (Fig. 6 A) (from a normalized
value of 0.99 � 3E-4 to 0.42 � 5E-3; n � 248 sites) (for related
findings, see Lima et al., 2010). This was due primarily to a loss
of the gamma bump, as evident in the small proportion of the
total power provided by this component with high masking
noise (Fig. 6 B).

The relationship between the tuning of gamma and local spik-
ing activity depended on the strength of masking noise. Figure 6C
shows the orientation preference for one array at three noise
levels. For unmasked gratings (0% noise; top panel), the prefer-
ence of gamma was similar across sites (� 2 of 0.12 and r�-� of
0.67) and distinct from local multiunit activity (rMUA-� of 0.15).
With high masking noise (80% noise; bottom panel), the tuning
of the two signals became more similar (rMUA-� of 0.56), and,
thus, the preference of gamma was no longer shared across sites
(� 2 of 0.59 and r�-� of 0.33). Across implants, as masking noise
was increased, r�-� decreased from 0.74 � 3E-3 to 0.48 � 2E-3;
p �� 0.001; n � 8911 pairs of sites) and gamma became more
similarly tuned to the local MUA (rMUA-� increased from 0.14 �
0.02 to 0.46 � 0.02; p �� 0.001; n � 228 sites).

These results show that noise masking disrupts the gamma
bump induced by large stimuli and results in gamma whose tun-
ing is similar to local spiking activity. Compared with manipula-
tions of stimulus size, masking required a larger decrease in
gamma power to generate a signal with similar preference to local
spiking activity: it is only at the highest level of masking noise,
when the gamma bump is nearly entirely suppressed (Fig. 6B),
that the two signals become more similarly tuned. Thus, while the
trends for size and noise masking manipulations are similar, the
point at which gamma switches from a shared preference to a
local one is different. This is presumably because of numerous
differences in the drive provided by these two stimuli. Neverthe-

A

B D F

C E

Figure 5. Two components of gamma power and their dependence on stimulus size. A, B, Power spectra of LFPs from one
recording site, for large (10°; A) and small (1°; B) stimuli for two orientations (red and black lines) and spontaneous activity (gray
lines). Estimate of broadband component of gamma power is provided by the exponential fit indicated with dashed lines. C,
Normalized power of the gamma bump and broadband component, as a function of stimulus size (n � 129 sites). D, Proportion of
total power attributable to the gamma bump. E, F, Dependence of rMUA-� (solid trace; n � 129 sites) and r�-� (dashed trace; n �
2961 pairs), for the gamma bump (E) and broadband component (F ), on stimulus size.
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less, our masking results clearly show that the change in the tun-
ing of gamma does not require reducing stimulus size or the
spatial extent of activated cortex.

To test further the flexible relationship between the tuning of
gamma and local spiking activity, we made use of the slow
buildup of induced gamma after stimulus onset (Bauer et al.,
1995; Ray and Maunsell, 2010). We analyzed responses to large
gratings drifting in different directions, with interleaved blank
stimuli, using a sliding window (129 ms epoch length with 25 ms
steps). Gamma power increased soon after stimulus onset (Fig.
7A, vertical dashed line) but reached its maximum �250 ms later,
on average (n � 683 sites). The proportion of power attributable
to the gamma bump reached its maximum at a similar time, but
its onset was delayed, revealing that the initial enhancement of
gamma reflects a broadband increase in power (Fig. 7B).

During the initial epoch of the response (25–154 ms after
stimulus onset) (Fig. 7C, top), gamma tuning was well matched
to the local spiking activity (rMUA-� of 0.47) and had a wide range
of preferences (� 2 of 0.87). In later epochs, gamma tuning
changed to a common preference across sites (� 2 of 0.25 for the
epoch from 350 to 479 ms). Across implants, we found that r�-�

increased markedly over the first few hundred milliseconds of
response (from 0.47 � 2E-3 to 0.71 � 2E-3; p �� 0.001) (Fig. 7D,
gray line). Over the same period, rMUA-� fell more than twofold
(from 0.35 � 0.01 to 0.14 � 0.02; p �� 0.001) (Fig. 7D, black

line). The relationship between the tuning of gamma and local
MUA is thus dynamic, and these dynamics mirror the relative
contribution of the gamma bump to its total power.

In conclusion, there are two components to stimulus-induced
increases in gamma power, and the relative weight of these deter-
mines the relationship between gamma tuning and that of local
spiking activity. Stimuli that induce strong gamma bumps (large,
unperturbed gratings) result in similar tuning across sites and a
preference that is distinct from that of local MUA. Small gratings,
or those masked with noise, induce gamma that arises from a
broadband increase in power, resulting in a signal with similar
tuning to the local spiking response. Similarly, the dynamic rela-
tionship between the tuning of gamma and local spiking activity
reveals that, as the contribution of the gamma bump to total
gamma power increases, the preference of gamma switches from
that of the local MUA to a common orientation across sites.

Spatial coherence of the gamma rhythm
When gamma power is high and the spectral bump prominent,
tuning is similar across sites. This suggests that, under these con-
ditions, the preference of locally measured signals arises from a
shared rhythm. To test this directly, we measured the spatial co-
herence and phase difference of gamma across sites, for different

Figure 6. Masking noise modulates gamma power and its tuning. A, Effect of masking noise
on normalized gamma power (solid trace; n � 248 sites) and firing rate (dashed trace). B,
Proportion of total power attributable to the gamma bump. C, Comparison of orientation pref-
erence of gamma and MUA for three noise levels (n � 76 sites in one array). Gamma is more
dissociated from local spiking activity when the gamma bump is more prominent. D, Depen-
dence of rMUA-� (solid trace; n � 228 sites) and r�-� (dashed trace; n � 8911 pairs; error bars
are smaller than the line thickness) on the amount of masking noise. Stimuli size is 10°. Repre-
sentation of stimuli is shown at the bottom.

25 - 154ms

225 - 354ms

350 - 479ms

A

B

D

C

Figure 7. Dynamics of gamma power and its tuning. A, Population average of normalized
gamma power, as a function of time relative to stimulus onset (n � 683 sites; error bars are
smaller than the line thickness). Power peaks around 250 ms after stimulus onset. Each point
represents the center of one epoch (129 ms window). The dashed vertical line, to facilitate
comparisons across plots, indicates stimulus onset at 0 ms. B, Dynamics of the proportion of
total power attributable to the gamma bump. C, Orientation preference of gamma and MUA for
epochs 25–154, 225–354, and 350 – 479 ms after stimulus onset (n � 86 sites). D, Dynamics of
rMUA-� (black; n � 683 sites) and r�-� (gray trace; n � 29,870 pairs; error bars are smaller than
the line thickness). Negative values indicate time before stimulus onset.
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stimulus conditions. A shared gamma rhythm would be indi-
cated by higher coherence and smaller phase offsets.

We computed the coherence between signals induced by both
large and small stimuli (n � 2961 pairs; averaging across different
stimulus orientations), using the same set of driven sites. Small
gratings (1°) induced a small increase in gamma coherence, rela-
tive to spontaneous conditions, with a limited spatial extent of
�2 mm (Fig. 8A, left column; B). Large gratings induced a more
substantial increase in coherence and signals were also more
phase aligned (Fig. 8A, right column). This enhanced coherence
extended across all measured distances (Fig. 8B) and decayed
more slowly for large gratings than small ones (exponential decay
with a space constant of 1.6 mm, compared with 1.0 mm for small
gratings). The enhanced coherence for activity induced by large
gratings was strongest for the shared, preferred orientation (data
not shown).

We also compared coherence for large, unperturbed gratings
with those masked with noise. Gamma coherence was weaker and
more localized for signals induced by masked gratings (Fig. 8C,
left column; D) (n � 9891 pairs). For 80% masking noise, coher-
ence was nearly indistinguishable from that measured under
spontaneous conditions (without stimulus drive), although
gamma and spiking responses were selective for such stimuli (as
evidenced by the enhanced value of rMUA-� in Fig. 6).

Our coherence analysis suggests that large gratings induce a
single, global gamma rhythm with little phase lag across sites. If

so, gamma activity should be maintained
after averaging the signals recorded at dif-
ferent sites on each trial—a signal we term
the global LFP. Figure 9A shows single-
trial examples of the global LFP induced
by large (10°; top) and small (1°; bottom)
gratings of the same orientation, averaged
across the same sites. The large stimulus
induced a prominent gamma rhythm; this
was absent from the signal induced by the
small stimulus. This result was not due to
an undue influence of the signal recorded
at a few electrodes, as Z-scoring the LFP
before averaging yielded essentially iden-
tical results. We quantified the power in
the global LFP for all frequencies and
stimulus sizes we presented (n � 3 im-
plants) (Fig. 9B). For small gratings,
gamma components of the global LFP had
minimal power. For larger stimuli, how-
ever, power in the gamma band increased
nearly sixfold over the range measured.
Other frequency bands did not show this
behavior. The global LFP showed strong
orientation selectivity for gamma power
induced by large but not small stimuli
(Fig. 9C). Across implants (n � 3), the
selectivity of the gamma component of
the global LFP was 0.32 � 0.08, compara-
ble with the selectivity at each individual
site (0.37 � 0.01), and its preferred orien-
tation closely matched the mean prefer-
ence of signals measured at individual
sites (mean offset of 1.7 � 0.7°; n � 8
implants).

Together, these results show that the
gamma measured at each electrode re-

flects a spatially extensive rhythm, when activity is induced by
large but not small gratings. The power in this signal is stronger
for some orientations than others, giving rise to a common pref-
erence across sites. A potential explanation for the extensive co-
herence of gamma induced by large stimuli is that it reflects
volume conduction, which could in principle explain its similar
tuning across sites as well (i.e., if the signal measured by each
electrode reflects a spatial average of distantly generated gamma
signals). Several pieces of evidence argue against this. First, recent
estimates of volume conduction suggest it is limited to 250 �m
(Xing et al., 2009), �20-fold smaller than the extent of spatially
coherent gamma that we observe. Consistent with this, annular
gratings induce no gamma power at sites where spiking activity is
not elevated (Gieselmann and Thiele, 2008) (X. Jia and A. Kohn,
unpublished observations), showing that gamma from distant
sites does not passively propagate over large distances. Second,
because high-amplitude signals should conduct more effectively
(i.e., remain measurable despite the attenuation associated with
passive propagation through the extracellular space), one would
expect low frequencies to be more coherent than gamma fre-
quencies, as their power is substantially higher (Fig. 1B). How-
ever, when induced by large gratings, gamma was slightly more
coherent than low frequencies (Fig. 8A) (mean of 0.599 � 0.002
for gamma vs 0.583 � 0.002 for frequencies �10 Hz), although
gamma power was 26-fold lower. Note also that the change in the
preference and coherence of gamma with stimulus conditions

Figure 8. Dependence of gamma coherence and phase alignment on distance. A, Coherence (top panels) and absolute phase
difference (bottom panels) of the LFP, as a function of the distance between recording sites (n � 2961 pairs). Results are shown for
signals induced by small gratings (1°; left) and large gratings (10°, averaged across stimulus orientations; right). Gamma coherence
is weak and has a limited spatial extent when stimuli are small; gamma coherence increases markedly in both magnitude and
spatial extent when stimuli are large, especially for the preferred orientation, and gamma activity shows a smaller phase difference
across sites. B, Coherence of gamma (averaged across orientations) induced by 1, 4, and 10° gratings as a function of distance
between recording sites, compared with that observed in the absence of visual stimulation (spontaneous; dashed line). Error bars,
where not visible, are within the line thickness. C, Coherence (top panel) and absolute phase difference (bottom panel) of LFPs
induced by 80% noise masked large grating (n � 9891 pairs; left) and unperturbed large gratings (right). D, Coherence of gamma
induced by 50 and 80% noise-masked and unperturbed gratings as a function of distance, compared with that observed for
spontaneous activity.
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involved roughly twofold changes in power (Figs. 4A, 6A). It
seems unlikely that this would result in a signal whose tuning was
different at sites separated by 400 �m, in one case, but shared up
to 9 mm in another. Third, when a strong gamma rhythm is
induced, spike–spike coherence in gamma frequencies is elevated
across the array (Jia et al., 2011). Since volume-conducted fields
have little influence on membrane potential—compared with
those locally generated—the enhanced coordination of neuronal
activity argues strongly against an important contribution of vol-
ume conduction (Bauer et al., 2007). Fourth, if the gamma
rhythm induced by large gratings involved simple volume con-
duction of distant signals, one would expect little or no selectivity,
because each site would represent the average of locally generated
signals with different preferences. In fact, tuning was more selec-
tive for gamma induced by large gratings than small ones (as
described above).

An adaptable bias underlies the preference of the global
gamma rhythm
We have shown that large stimuli induce a spatially extensive
gamma rhythm that is both well tuned and has a common pref-
erence across millimeters of cortex. We wondered why some ori-
entations would induce a stronger rhythm than others, over such
a large region. One possibility is that this preferred orientation
reflects or magnifies a small bias in the neuronal representation of
orientation. An obvious source for this bias would be the pur-
ported systematic overrepresentation of cardinal orientations in
primary visual cortex (Li et al., 2003). However, we observed a
shared preference for noncardinal orientations in a number of
implants, such as those in Figure 2, C and D. Alternatively, the
shared preference could arise from an inhomogeneous represen-
tation within a more limited region, such as the bias seen in fMRI
voxels that are orientation-tuned despite reflecting activity aver-
aged over several (or even many) cubic millimeters (Kamitani
and Tong, 2005; Haynes and Rees, 2006).

We attempted to detect this potential representational bias
with our neuronal recordings by comparing the preference of the
gamma induced by large gratings to the most common prefer-
ence of the spiking activity detected by our array. Figure 10A

shows the range of MUA preferences from one array (� 2 � 0.88;
n � 89 sites, arranged according to their position on the array),
measured with large gratings. Figure 10B shows the orientation
preference of gamma from the same array, with its characteristic
narrow distribution of preferences (� 2 � 0.26). In this implant,
there is no obvious relationship between the preference distribu-
tion of gamma and that of the recorded spiking responses: the
preferred orientation of gamma is near 0°, but there is no bias for
this orientation in the spiking responses. We quantified this rela-
tionship by computing the correlation between the population-
averaged tuning of MUA and gamma, after normalizing the data
for each site by the maximal response. For the example implant,
this correlation was 0.28 (Fig. 10C). Across implants the mean
correlation was 0.27 � 0.24 (n � 8), not significantly different
from zero (p � 0.72). We were thus unable to detect a bias in the
spiking representation of orientation that could underlie the
shared preference of gamma. However, this failure is perhaps not
surprising given the limited sample of recording sites provided by
the array.

Because we could not observe a relationship between the pref-
erences of the sampled spiking activity and the shared preference
of gamma, we used an alternative strategy of manipulating the
representation of orientation with adaptation. Adaptation is well
known to reduce the responsivity of cortical neurons whose pref-
erences match the adapter and to have little effect on cells with
offset preferences (Kohn, 2007). If gamma magnifies a presumed
bias in the neuronal representation of orientation, adaptation-
induced changes in neuronal response should have a strong con-
sequence for gamma tuning.

We measured tuning with our standard grating stimuli, before
and after adapting with a single orientation for 40 s. To maintain
the effects of adaptation, we used brief (5 s) “top-up” adaptation
between test stimuli (Fig. 11A). An illustration of how adaptation
affects the orientation preference of gamma is shown in Figure
11B for a recording in which the adapter (indicated by the arrow)
was well aligned with the most commonly preferred orientation.
Adaptation caused a striking shift in the preference of gamma to

Figure 9. The global LFP. A, Single trial examples of the global LFP averaged across 31 sites of one implant, for activity induced by a large (top) and small (bottom) stimulus of the same orientation.
The insets show the power spectrum of the signal. B, Average of the global LFP power spectra for different sizes (n � 3 implants). Value indicated is the average across orientations. C, Orientation
tuning of the gamma component of the global LFP, for 10° (top) and 1° (bottom) stimuli of an array implant.
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the orthogonal orientation (mean offset increasing from 20.7 �
1.9° to 65.4 � 2.5°; p �� 0.001). After a period of several minutes
without visual stimulation, the distribution of preferences nearly
fully recovered to its preadaptation form. Across implants (n �
8), there was a pronounced tendency for the preference to shift
toward the orientation orthogonal to the adapter (Fig. 11C). In
those cases in which the preference was nearly orthogonal to the
adapter before adaptation, we observed smaller shifts.

A similar effect of adaptation was visible in the population
tuning curves, computed by averaging data from sites with simi-
lar preadaptation preferences (bins of 22.5°) after normalizing
the responses at each site by its maximum. Adaptation caused a
dramatic shift of preference to the orthogonal orientation when
the adapter was well matched to the initial preference (Fig. 11D,
top) (n � 127 sites; shift of 65.4°). This was due to a strong
suppression of the gamma induced by stimuli similar to the
adapter, and a facilitation of the signal induced by orthogonal
orientations. In recordings for which the preadaptation gamma
preference was orthogonal to the adapter, these effects led to little
change in preference but a clearer shared tuning (Fig. 11D, bot-
tom) (n � 138 sites; shift of 4.0°). These results suggest that the
global gamma rhythm is extremely sensitive to adaptation-induced
changes in neural representation, consistent with its preference mag-
nifying a weak bias in that representation.

We tested our explanation for the shared preference of gamma
in an additional, independent manner: by measuring tuning for
grating spatial and temporal frequency. Whereas the representa-
tion of orientation would be expected to be at most weakly biased,
neuronal preferences for spatial and temporal frequency are well
known to be nonuniformly distributed (Foster et al., 1985;
Hawken et al., 1996; O’Keefe et al., 1998). We reasoned that, if a
biased representation underlies the preference of gamma, its tun-
ing for spatial and temporal frequency should be similar both
across sites and implants.

We measured tuning using large gratings drifting at a fixed
drift rate (6.25 cycles/s) and with spatial frequencies ranging from
0.1 to 8.6 cpd, or with a fixed spatial frequency (1 cpd) and a range
of drift rates (0.3–25 cycles/s). Sites for which the minimal re-
sponse was not at least 50% smaller than the peak response were
deemed untuned (Foster et al., 1985) (6.3% of 567 MUA sites for
spatial frequency and 9.6% of 732 MUA sites for temporal fre-

Figure 10. Relationship between neuronal preferences sampled by the array and the
preference of gamma. A, MUA orientation preferences plotted according to electrode
positions on the array (left) and corresponding distribution (right). B, Gamma preferences
from the same array as in A and their distribution (n � 86 sites). C, Population tuning
curves of MUA (dashed) and gamma (solid) calculated by averaging normalized tuning
curves of all sites from the same array. The two tuning curves are only weakly related, with
a correlation of 0.28.

Figure 11. Effect of adaptation on the tuning of gamma. A, Illustration of the adaptation protocol. B, Distributions (from a single implant) of orientation preference for preadaptation,
postadaptation, and recovery periods for gamma (top) and MUA (bottom). The circular variance is indicated at the top left of each histogram. The arrow indicates the orientation of the adapter. C,
Quantification of mean orientation preference of gamma, relative to the adapter, before and after adaptation (n � 8 implants). D, Population-averaged orientation tuning curves before (black) and
after (red) adaptation for gamma. All tuning curves are aligned so that 0 represents the adapting orientation (indicated by arrow). The top panels represent cases in which the tuning preference was
within 22.5° of the adapter (n � 127 sites). The bottom panels are cases in which the preference was orthogonal to the adapter (n � 138 sites).
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quency). At selective sites, MUA often had high-pass or low-pass
tuning (Fig. 12C,D) (7.9 and 9.1%, respectively, for spatial fre-
quency; and 10.3 and 36.0% for temporal frequency), defined as
a response at the lowest or highest measured frequency that was
�75% of the peak response (Levitt et al., 1994; Movshon et al.,
2005). At the remaining bandpass sites, we estimated the prefer-
ence based on the fit of a difference-of-Gaussians function to the
data. MUA had a wide range of spatial and temporal frequency
preferences (Fig. 12C,D).

Unlike the tuning of MUA, gamma power had bandpass tun-
ing for both stimulus parameters at almost all sites (Fig. 12A,B)
(99.8% of sites for spatial frequency tuning and 97.8% for tem-
poral frequency). There were no untuned gamma sites. Remark-
ably, gamma preferences for spatial and temporal frequency were
similar across sites and implants (Fig. 12C,D). For instance,
across 567 sites recorded in seven implants, 86% of sites preferred
a spatial frequency between 1 and 3 cpd; for MUA, these prefer-
ences were most common but they accounted for only 29% of
sites. The similarity of spatial and temporal frequency tuning of
gamma, across sites and implants, is consistent with its preference
arising from the biased representation for these stimulus features.

Discussion
To determine the spatial extent of gamma and its relationship to
spiking activity, we recorded LFPs and MUA simultaneously in
the upper layers of macaque V1. We found that gamma could
have similar tuning to local spiking activity, when it reflected a
broadband increase in power. Under other conditions, gamma
could form a coherent, spatially extensive rhythm with similar
tuning across millimeters of cortex. This latter behavior was evi-
dent for stimuli that induced a distinct spectral bump, a signal

that grew slowly after stimulus onset and that could be disrupted
by reducing stimulus size, or using masking noise. Our results
suggest two distinct components to gamma power, with very
different relationships to neuronal activity. The relative weight of
these two components is stimulus dependent, resulting in a flex-
ible relationship between the tuning of gamma power and local
spiking activity.

This flexible relationship offers an explanation for previous
disparate findings. Some previous comparisons of the tuning of
gamma and local MUA have found matched preferences, but
others have not. This has led to estimates that gamma reflects
activity within 250 �m up to 3 mm of the electrode (Gray and
Singer, 1989; Kreiman et al., 2006; Liu and Newsome, 2006; Be-
rens et al., 2008; Gieselmann and Thiele, 2008). Our findings
show stimulus conditions under which each of these descriptions
is accurate. Similarly, studies of the relationship between gamma
and the BOLD fMRI signal have found both strong correlation
[Kayser et al., 2004; Goense and Logothetis, 2008 (who both used
prolonged presentations of large gratings)] and a weak one
[Maier et al., 2008 (who used briefly flashed noise stimuli)].
These differences could be explained by the two components of
gamma we observe, assuming the global gamma rhythm is more
directly related to the macroscopic measurement afforded by
BOLD. More generally, our results emphasize that one must care-
fully consider stimulus properties—and the relative weight of
broadband increases in power to the spectral bump—in under-
standing and interpreting the behavior of gamma.

When induced by large gratings, gamma is coherent over mil-
limeters of cortex, consistent with previous studies (Juergens et
al., 1999; Frien and Eckhorn, 2000; Leopold et al., 2003). Despite
this spatial extent, it remains remarkably well tuned. Our obser-
vations thus reconcile previous work emphasizing the extent of
gamma coherence with seemingly inconsistent claims that
gamma is well tuned. Importantly, our results show that inferring
the spatial extent of gamma rhythms from their selectivity is
problematic: a well tuned signal does not mean a local one. Only
by measuring tuning and coherence across sites—a novel feature
of our study— can one accurately determine the extent and func-
tional specificity of gamma rhythms.

Our findings do not contradict recent reports that the evoked
LFP reflects neural activity within 250 �m of recording site
(Katzner et al., 2009) and that the passive propagation of extra-
cellular fields has a similarly limited spatial extent (Xing et al.,
2009). We focused on an induced signal whose extent is influ-
enced by passive propagation but ultimately determined by the
circuits generating it. Katzner et al. (2009) did compare the ori-
entation tuning of the induced and evoked LFP and concluded
they were similar. However, activity was driven by brief stimuli
(32 ms) that do not induce a strong gamma rhythm (Fig. 7)
(Kruse and Eckhorn, 1996). To be sure that our different conclu-
sions concerning induced gamma were not due to other factors,
we recorded responses to similarly brief (40 ms) presentations
and confirmed that the induced gamma power is weak, contains
little evidence of a bump, and that both this signal and the evoked
response are similarly tuned to local MUA (data not shown),
entirely consistent with Katzner et al. (2009).

A previous study by Berens et al. (2008) conducted in awake
macaque V1 using large gratings, reported findings similar to a
subset of ours. Namely, they found that the orientation prefer-
ence of gamma was similar across nearby sites (separated by 1
mm or less) and inferred that gamma reflects activity within 500 –
1000 �m of the electrode tip, due to a combination of extensive
circuits generating the rhythm and the volume conduction of

A

C D

B

Figure 12. MUA and gamma tuning for stimulus spatial and temporal frequency. A, An
example of gamma tuning for spatial frequency for a single site. B, Same as A for temporal
frequency tuning. C, Distribution of spatial frequency preferences across all implants (567 sites
from 7 implants), for tuned sites of MUA (top) and gamma (bottom). D, Same as C for temporal
frequency preferences (732 sites from 9 implants).
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those signals. Our interpretation differs from theirs in part be-
cause we show that gamma power consists of two components.
Shared tuning across sites is not a fixed property of gamma; it
occurs only when a prominent bump is induced. Furthermore,
our data suggest that, when tuning is similar across sites, this is
not due to simple volume conduction of nearby signals (for reasons
described in Results), but rather because of the formation of a spa-
tially extensive, coherent rhythm. Our different interpretation arises
because we considered a wider range of stimulus manipulations
(size, noise masking, dynamics, and spatial and temporal fre-
quency), sampled across a �10-fold higher range of distances, and
because we analyzed both coherence and tuning across sites.

Berens et al. (2008) also reported that the selectivity of gamma
is positively correlated with its similarity to local spiking activity.
They propose that this relationship reflects the spatially extensive
ensemble contributing to gamma and whether the recording site
is situated in an iso-orientation domain (similar preference to
MUA and high selectivity) or at a pinwheel center. We observe a
similar relationship between selectivity and the match to local
MUA (Jia and Kohn, unpublished observations), even when
gamma was induced by large gratings and extends over many
pinwheels. In this case, the correlation may arise because when
gamma preference is matched to local spiking activity, the
gamma bump and its broadband component will have a similar
preference, resulting in higher selectivity; at sites where gamma is
different from local spiking activity, these two components will
have different preferences, resulting in weaker selectivity.

Mechanisms
The mechanisms of gamma generation have been studied exten-
sively, both in the hippocampus and neocortex. GABAergic in-
terneurons have been shown to play a critical role in generating
gamma (Whittington et al., 1995, 2011; Traub et al., 1996a; Ha-
senstaub et al., 2005; Bartos et al., 2007; Atallah and Scanziani,
2009; Cardin et al., 2009), and this is perhaps enhanced by inter-
actions with excitatory neurons (Buzsaki, 2006; Tiesinga and Se-
jnowski, 2009). In cortex, “chattering cells” may also contribute
(Gray and McCormick, 1996; Cunningham et al., 2004).

These mechanisms do not appear to contribute strongly to the
gamma induced by small stimuli and large, masked gratings, or at
response onset. This is because gamma in these cases reflects a
broadband increase in power, rather than a mechanism specific
to gamma frequencies (Ray and Maunsell, 2010). Instead, the
broadband increase in power likely arises from a general eleva-
tion of synaptic and spiking activity in local circuits because this
signal behaves similarly to local MUA (e.g., similar orientation
tuning and suppression by large gratings). This component of
gamma may also include direct spectral contamination of the LFP
by spiking activity, although previous work suggests this is lim-
ited to frequency components �50 Hz (David et al., 2010; Zanos
et al., 2011).

The traditional inhibitory (or excitatory–inhibitory) mecha-
nisms of gamma generation presumably do underlie the spectral
bump we observe for activity induced by large stimuli. However,
the global nature of this rhythm suggests additional spatially ex-
tensive mechanisms that coordinate or drive this inhibitory net-
work. One possibility is that this involves feedback connections,
which extend over long distances and are thought to contribute
to the surround suppression recruited by large stimuli (Bair et al.,
2003; Angelucci and Bressloff, 2006). Alternatively, the global
gamma rhythm may be an emergent rhythm that involves the
coordination of local generators through mechanisms such as
long-range lateral connections or gap-junction coupling among

inhibitory neurons (Traub et al., 1996b; Gibson et al., 1999; Buz-
saki, 2006; Tiesinga and Sejnowski, 2009). Finally, the global
gamma rhythm may arise from an altered balance between excit-
atory and inhibitory activity in cortex, because inhibitory cells
may be only weakly surround suppressed (Brunel and Wang,
2003; Haider et al., 2010).

Whichever mechanisms contribute, they must be more effec-
tive for some stimuli than others, a property we suggest may be
due to biased representations for these features (e.g., stronger
feedback or an enhanced local representation). An intriguing
possibility is that this bias involves a recently described overrep-
resentation of orientations corresponding to the radial position
of the spatial receptive fields [a radial bias (Freeman et al., 2011)].
The sites we recorded represented similar positions in the visual
field across animals, so one might expect to observe similar pref-
erences. However, the gratings we used were positioned slightly
differently in each animal, and given the proximity of our record-
ings to the fovea, these small differences could alter the net bias in
the recruited population. These explanations for our findings are,
of course, speculative, and additional work is needed to address
the mechanisms underlying the novel properties of gamma we
report.

Functional role of gamma rhythms
Through its suggested influence on spike timing, gamma has
been proposed to provide a temporal window for communica-
tion (Fries, 2009), encode the amplitude of stimulus drive in
response phase (Fries et al., 2007), bind distributed representa-
tions (Gray, 1999), or dynamically route information (Pesaran et
al., 2002; Colgin et al., 2009; Fries, 2009). The spatially extensive,
coherent gamma rhythm we observe seems better suited for an
integrative function than one that requires targeting specific sub-
sets of neurons. For instance, the gamma induced by a large ver-
tical grating is similar at sites where neurons prefer vertical or
horizontal structure. Thus, it could not be expected to emphasize
or group specific subset of neurons. Only when gamma power is
limited (reflecting a broadband increase in power), is it spatially
and functionally selective. However, precisely because it is weak,
it is unlikely to have a strong influence on spike timing under
these conditions (Sohal et al., 2009; Okun et al., 2010).

As an integrative signal, the global gamma rhythm could, in
principle, function as an internal reference. For instance, it seems
well suited to modulate spike timing in a large region of cortex.
However, this rhythm is much stronger for some stimuli than
others, in a patch of cortex representing several degrees of visual
field. Unless perceptual performance is similarly biased, this
would suggest a limited functional role, at least for stimulus-
induced gamma activity in V1. Under this interpretation, the
global gamma rhythm may simply be a resonant frequency arising
from the interaction between excitation and inhibition (Burns et al.,
2010; Ray and Maunsell, 2010), albeit one that can reflect a much
more extensive ensemble than previously considered.
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Popescu AT, Popa D, Paré D (2009) Coherent gamma oscillations couple
the amygdala and striatum during learning. Nat Neurosci 12:801– 807.

Ray S, Maunsell JH (2010) Differences in gamma frequencies across visual
cortex restrict their possible use in computation. Neuron 67:885– 896.

Schoffelen JM, Oostenveld R, Fries P (2005) Neuronal coherence as a mech-
anism of effective corticospinal interaction. Science 308:111–113.

Siegel M, König P (2003) A functional gamma-band defined by stimulus-
dependent synchronization in area 18 of awake behaving cats. J Neurosci
23:4251– 4260.

Smith MA, Kohn A (2008) Spatial and temporal scales of neuronal correla-
tion in primary visual cortex. J Neurosci 28:12591–12603.

Smith MA, Kelly RC, Lee TS (2007) Dynamics of response to perceptual
pop-out stimuli in macaque V1. J Neurophysiol 98:3436 –3449.

Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons
and gamma rhythms enhance cortical circuit performance. Nature
459:698 –702.

Tallon-Baudry C (2003) Oscillatory synchrony and human visual cogni-
tion. J Physiol Paris 97:355–363.

Tiesinga P, Sejnowski TJ (2009) Cortical enlightenment: are attentional
gamma oscillations driven by ING or PING? Neuron 63:727–732.

Traub RD, Whittington MA, Colling SB, Buzsáki G, Jefferys JG (1996a)
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